Communication
Dalton Transactions
(vide supra). Moreover, the protonated species nido-HL− was
also detected in electrospray ionisation mass spectra of the
reaction mixture (see the ESI†). A substitution of 1,5-cycloocta-
diene in Int-A by nido-L2− (step 3) followed by concomitant oxi-
dation of the resulting intermediate Int-B yields the
symmetric 13-vertex metallacarborane Int-C, also detected by
Notes and references
‡The possible formation of nido-L2− as a reaction intermediate is additionally
corroborated by an independent experiment, where diphosphane L was reduced
with two equivalents of potassium graphite (KC8, see the ESI†).
§Note that the CHN analysis for Int-A is not in agreement with the calculated
values for C38H40N2Co [found (calc.): C: 76.26 (78.20), H: 6.95 (6.91), N: 4.09
31P{1H} NMR spectroscopy. Taken together, steps 3 and 4 are (4.80)]. The observed discrepancies are likely due to the contamination of Int-A
exothermic by −7.4 kcal mol−1. An isomerisation to the
with a minor amount of 3.
¶The chelate complex 2′ was not observed in any of our NMR spectroscopic
investigations. In fact, this complex lies higher in energy than 2 by 5.7 kcal mol−1
unsymmetrical complex 2 is the final step of this sequence
(step 5, again exothermic by −13.3 kcal mol−1). Such an iso-
at the M06-D3(0)/def2-TZVP CPCM(THF) level of theory.
merisation is commonly observed for related 13-vertex
metallacarboranes.1,24 The mechanism proposed in Scheme 2
is thus in line with all NMR spectroscopic and crystallographic
observations. The proposed intermediates Int-A–Int-C are
viable species based on the DFT calculations, and the (mostly
exothermic) reaction steps add up to a total reaction energy of
−36.8 kcal mol−1.¶
1 (a) R. N. Grimes, Coord. Chem. Rev., 2000, 200–202, 773–
811; (b) R. N. Grimes, Carboranes, Elsevier, Saint Louis,
3rd edn, 2016; (c) V. I. Bregadze, Chem. Rev., 1992, 92, 209–
223.
2 M. F. Hawthorne, G. B. Dunks and M. M. McKown, J. Am.
Chem. Soc., 1971, 93, 2541–2543.
3 D. F. Dustin, G. B. Dunks and M. Frederick Hawthorne,
J. Am. Chem. Soc., 1973, 95, 1109–1115.
4 M. R. Churchill and B. G. DeBoer, Inorg. Chem., 1974, 13,
1411–1418.
Conclusions
5 D. Ellis, M. E. Lopez, R. McIntosh, G. M. Rosair,
A. J. Welch and R. Quenardelle, Chem. Commun., 2005,
1348–1350.
6 S. Zlatogorsky, D. Ellis, G. M. Rosair and A. J. Welch, Chem.
Commun., 2007, 2178–2180.
7 L. Deng, H.-S. Chan and Z. Xie, Inorg. Chem., 2007, 46,
2716–2724.
8 D. Ellis, R. D. McIntosh, S. Esquirolea, C. Viñas,
G. M. Rosair, F. Teixidor and A. J. Welch, Dalton Trans.,
2008, 1009–1017.
9 G. Scott, A. McAnaw, D. McKay, A. S. F. Boyd, D. Ellis,
G. M. Rosair, S. A. Macgregor, A. J. Welch, F. Laschi,
F. Rossi and P. Zanello, Dalton Trans., 2010, 39, 5286–
5300.
10 D. Ellis, G. M. Rosair and A. J. Welch, Chem. Commun.,
2010, 46, 7394–7396.
11 A. McAnaw, M. E. Lopez, G. Scott, D. Ellis, D. McKay,
G. M. Rosair and A. J. Welch, Dalton Trans., 2012, 41,
10957–10969.
The anionic 13-vertex closo-cobaltacarborane cluster was syn-
thesised by a direct route using α-diimine cobaltate [K(thf)-
{(MesBIAN)Co(η4-cod)}] (1) and isolated in a high yield of 59%.
The mechanism of this transformation was studied by experi-
mental techniques (single-crystal XRD, multinuclear NMR
spectroscopy and ESI-MS) and through DFT calculations.
An intermediate [(MesBIAN)Co(η4-cod)] (Int-A) was isolated,
while ESI-MS data and DFT investigations hint at the
formation of a dianionic nido-carborane nido-L2− as a key
intermediate en route to the final cluster 2. These results
suggest a redox mechanism that is initiated by an electron
transfer from
1 to the 1,2-bis(diphenylphosphino)-ortho-
carborane ligand L. Based on the work presented here, the syn-
thesis of new anionic metallacarborane derivatives by reaction
of further carborane derivatives with low-valent metalate
anions31 should be an appealing subject for future
investigations.
12 A. McAnaw, M. E. Lopez, D. Ellis, G. M. Rosair and
A. J. Welch, Dalton Trans., 2012, 42, 671–679.
13 D. Mandal, W. Y. Man, G. M. Rosair and A. J. Welch, Acta
Crystallogr., Sect. C: Struct. Chem., 2015, 71, 793–798.
14 G. K. Barker, M. P. Garcia, M. Green, F. G. A. Stone and
A. J. Welch, J. Chem. Soc., Chem. Commun., 1983, 137–139.
15 Z. Qiu, K.-H. Wong and Z. Xie, J. Organomet. Chem., 2012,
721–722, 97–103.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
We thank Prof. B. de Bruin (University of Amsterdam, the 16 J. S. Ward, H. Tricas, G. Scott, D. Ellis, G. M. Rosair and
Netherlands) for access to the EPR instrument and valuable A. J. Welch, Organometallics, 2012, 31, 2523–2525.
assistance and MSc Axel Straube (Leipzig University) for 17 W. J. Evans and M. F. Hawthorne, J. Chem. Soc., Chem.
measurement of 13C{1H,31P} NMR spectra. In addition, we
Commun., 1974, 38–39.
gratefully acknowledge financial support by the Fonds der 18 A. McAnaw, M. E. Lopez, D. Ellis, G. M. Rosair and
Chemischen Industrie (fellowship to T. M. M.), the A. J. Welch, Dalton Trans., 2014, 43, 5095–5105.
Studienstiftung des deutschen Volkes (fellowship to P. C.) and 19 D. F. Dustin and M. F. Hawthorne, J. Am. Chem. Soc., 1974,
the Graduate School BuildMoNa (Leipzig University).
96, 3462–3467.
15776 | Dalton Trans., 2019, 48, 15772–15777
This journal is © The Royal Society of Chemistry 2019