10.1002/anie.201705559
Angewandte Chemie International Edition
COMMUNICATION
R. A. van Delden, Angew. Chem. Int. Ed. 1999, 38, 3419; Angew.
Chem. 1999, 111, 3624.
5 to 7, whereas dSmA grows, indicating that the local organization
in the Iso1 *] phases becomes more intercalated, and hence, less
[
[7]
[8]
a) G. Balavoine, A. Moradpour, H. B. Kagan, J. Am. Chem. Soc. 1974,
96, 5152; b) D. Pijper, B. L. Feringa, Soft Matter 2008, 4, 1349; c) Y.
Inoue, Chem. Rev. 1992, 92, 741.
sterically frustrated with decreasing chain length (Figure 4b→a),
in this way favoring the lamellar organization. Deeper chain-core
intercalation at decreased temperature (larger contribution of
linear trans-conformers makes the chains more compatible with
the rod-like cores) reduces the curvature further, and the local
clusters can fuse to infinite layers with intercalated structure
(SmA, n = 5, 6; Figure 4a,c). However, in the chiral isotropic
liquids of compounds A5 and A6 a twisted organization is still
retained in the aggregates and the local twist is obviously still
sufficient for chirality synchronization to take place, thus leading
a) G. Iftime, F. Lagugne, L. A. Natansohn, P. Rochon, J. Am. Chem.
Soc. 2000, 122, 12646; b) S.-W. Choi, S. Kawauchi, N. Y. Ha, H.
Takezoe, Phys. Chem. Chem. Phys. 2007, 9, 3671; c) F. Vera, R. M.
Tejedor, P. Romero, J. Barbera, M. B. Ros, J. L. Serrano, T. Sierra,
Angew. Chem. Int. Ed. 2007, 46, 1873; Angew. Chem. 2007, 119, 1905.
T. Ikeda, T. Sasaki, K. Ichimura, Nature, 1993, 361, 428; H. G. Walton,
H. J. Coles, D. Guillon, G. Poeti, Liq. Cryst. 1994,17, 333; A. Langhoff,
F. Giesselmann, Chem. Phys. Chem. 2002, 3, 424.
[9]
[10] S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, S. Das, J. Am.
Chem. Soc. 2006, 128, 7692.
to the chiral Iso1 *] phase. Only for the shortest homologue A4
[
sufficient twist cannot develop and the SmA phase is directly
formed from the achiral Iso phase. This provides an
[11] D. A. Paterson, J. Xiang, G. Singh, R. Walker, D. M. Agra-Kooijman, A.
Martınez-Felipe, M. Gao, J. M. D. Storey, S. Kumar, O. D. Lavrentovich,
C. T. Imrie, J. Am. Chem. Soc. 2016, 138, 5283.
understanding of the formation of symmetry-broken Iso1 *]
[
[12] a) J. Malthete, H. T. Nguyen, C. Destrade, Liq. Cryst. 1993, 13, 171; b)
H. T. Nguyen, C. Destrade, J. Malthete, Adv. Mater. 1997, 9, 375.
[13] C. Dressel, W. Weissflog, C. Tschierske, Chem. Commun. 2015, 51,
15850.
phases for compounds A5 and A6 occurring besides an SmA
phase, just before the cross-over from lamellar to bicontinuous
cubic organization in the adjacent LC phases.
In summary, isothermal switching from an achiral LC
phase to a mirror symmetry broken isotropic liquid with non-
polarized light was reported for achiral compounds, providing
significant potential for technological and nano-technological
applications.
[14] C. Dressel, T. Reppe, M. Prehm, M. Brautzsch, C. Tschierske, Nat.
Chem. 2014, 6, 971.
[15] C. Tschierske, G. Ungar, ChemPhysChem 2016, 19, 9.
[16] C. Dressel, F. Liu, M. Prehm, X. Zeng, G. Ungar, C. Tschierske, Angew.
Chem. Int. Ed. 2014, 53, 13115; Angew. Chem. 2013, 125, 13331.
[
[17] The Iso1 *] phases are distinct from the so-called dark conglomerate
phases (DC phases) formed by
a completely different class of
compounds, the bent-core molecules. DC phases represent sponge-
like deformed lamellar phases, where chirality and conglomerate
Experimental Section
[
formation is due to the combination of tilt and polar order.[25a] The Iso1 *]-
Iso transition between two isotropic liquids is (almost) continuous,[14,15]
whereas the DC-Iso transition, representing a SmCP-Iso transition, is
discontinuous and associated with relatively high transition enthalpies
(H ~10-25 kJ mol-1).[25b]
Compounds An were synthesized according to the procedures
given in the accompanying Supplementary Information, where
also the used experimental methods are described.
[18] a) M. Alaasar, M. Prehm, Y. Cao, F. Liu, C. Tschierske, Angew. Chem.
Int. Ed. 2016, 55, 312; Angew. Chem. 2016, 128, 320; b) M. Alaasar, S.
Poppe, Q. Dong, F. Liu, C. Tschierske, Chem. Commun. 2016, 52,
13869.
Acknowledgements
The work was supported by the DFG (Grand Ts 39/24-1) and
the National Natural Science Foundation of China (No.
21374086). We thank Beamline BL16B1 at SSRF (Shanghai
Synchrotron Radiation Facility, China) for providing the
beamtimes.
[19] H. M. Dhammika, S. C Burdette, Chem. Soc. Rev. 2012, 41, 1809.
[20] see supporting video in ref. [14].
[21] M. Jasinski, D. Pociecha, H. Monobe, J. Szczytko, P. Kaszynski, J. Am.
Chem. Soc. 2014, 136, 14658.
[22] a) G. W. Steward, R. M. Morrow, Phys. Rev. 1927, 30, 232; b) O.
Francescangeli, M. Laus, M. Galli, Phys. Rev. E, 1997, 55, 481.
[23] The SmA-Iso transition of A4 is reduced by -4 K during irradiation, but
[
no Iso1 *] phase is induced; the SmCa-SmA transition of A5 is shifted by
Keywords: Chirality, Photoisomerization, Azobenzene, Mirror-
symmetry breaking, Liquid crystal
-3 K.
[24] Irradiation of A7 and A8 in the tilted SmCa range can induce the cubic
phase, i.e. isomerization to the bent cis isomer increases the interfacial
curvature and the SmCa-Cub transition temperature is shifted by 7 K to
lower temperature, expanding the cubic phase range by
photoisomerization, similar as reported for azobenzene doped SmCs
phases.[26]
[1]
[2]
L. Pasteur, Comp. Rend. Acad. Sci. 1848, 26, 535.
a) W. A. Bonner, Orig. Life Evol. Biosph. 1991, 21, 59; b) L. D. Barron,
Space. Sci. Rev. 2008 135, 187; c) I. Budin, J. W. Szostak, Annu. Rev.
Biophys. 2010. 39, 245.
[3]
[4]
L. Ai Nguyen, H. He, C. Phan-Huy, Int J Biomed Sci. 2006, 2, 85..
M. M. Green, R. J. M. Nolte, E. W. Meijer, eds., Materials Chirality, Top.
Stereochem (S. E. Denmark, J. Siegel, eds.). Vol 24, Wiley, Hoboken,
NJ, 2003; D. B. Aamabilino, ed, Chirality at the nanoscale, Weiley-VCH
Weinheim, 2009; H. K. Bisoyi, Q. Li, Chem. Rev. 2016, 116, 15089.
E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda,
Chem. Rev. 2016, 116, 13752.
[25] a) L. E. Hough, M. Spannuth, M. Nakata, D. A. Coleman, C. D. Jones,
G. Dantlgraber, C. Tschierske, J. Watanabe, E. Körblova, D. M. Walba,
J. E. Maclennan, M. A. Glaser, N. A. Clark, Science 2009, 325, 452; b)
G. Dantlgraber, A. Eremin, S. Diele, A. Hauser, H. Kresse, G. Pelzl, C.
Tschierske, Angew. Chem. Int. Ed. 2002, 41, 2408; Angew. Chem.
2002, 114, 2514.
[5]
[6]
[26] R. Hori, Y. Miwa, K. Yamamoto, S. Kutsumizu, J. Phys. Chem. B 2014,
118, 3743.
a) M. Avalos, R. Babiano, P. Cintas, J. L. Jimenez, J. C. Palacios,
Chem. Rev. 1998, 98, 2391; b) G. L. J. A. Rikken, E. Raupach, Nature
2000, 405, 932; c) A. G. Griesbeck, U. J. Meierhenrich, Angew. Chem.
Int. Ed. 2002, 41, 3147; Angew. Chem. 2002, 17, 3279; d) B. L. Feringa,
This article is protected by copyright. All rights reserved.