Journal of the American Chemical Society
Communication
8766. (c) Yu, S.; Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3074. (d) Zbieg,
J. R.; McInturff, E. L.; Leung, J. C.; Krische, M. J. J. Am. Chem. Soc. 2011,
133, 1141. (e) Cooke, M. L.; Xu, K.; Breit, B. Angew. Chem., Int. Ed.
2012, 51, 10876. (f) Yuan, W.; Ma, S. Adv. Synth. Catal. 2012, 354, 1867.
(g) Semba, K.; Shinomiya, M.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem.
Eur. J. 2013, 19, 7125. (h) Meng, F.; Jung, B.; Haeffner, F.; Hoveyda, A.
H. Org. Lett. 2013, 15, 1414.
(5) (a) Cowen, B. J.; Saunders, L. B.; Miller, S. J. J. Am. Chem. Soc.
2009, 131, 6105. For enantioselective additions of trisubstituted
allenoates to N-tosylimines, see: (b) Hashimoto, T.; Sakata, K.;
Tamakuni, F.; Dutton, M. J.; Maruoka, K. Nat. Chem. 2013, 5, 240.
(6) Huang, Y.-Y.; Chakrabarti, A.; Morita, N.; Schneider, U.;
Kobayashi, S. Angew. Chem., Int. Ed. 2011, 50, 11121.
(7) (a) Ferretti, C.; Marengo, B.; De Ciucis, C.; Nitti, M.; Pronzato, M.
A.; Marinari, U. M.; Pronzato, R.; Manconi, R.; Domenicotti, C. Int. J.
Oncol. 2007, 30, 161. (b) Movassaghi, M.; Siegel, D. S.; Han, S. Chem.
Sci. 2010, 1, 561.
(8) For recent studies that address the issue of propargyl- to allenyl-
metal complex isomerization and its attendant consequences, see:
transformation of silyl-substituted allene to the derived bromo-
propargyl derivative, the heterocyclic moiety was outfitted with
two halogen atoms to afford tribromide 15 in 63% yield.
Subsequent treatment with bis-Boc-guanidine (16) and K2CO3
in dimethylformamide (22 °C, 8.0 h) furnished 17 in 62% yield
as a result of three operations: alkylation of the propargyl
bromide,20 removal of the Fmoc unit, and cyclization to the six-
membered ring amide. Intramolecular Ag-catalyzed hydro-
amination of the alkyne21 proceeded with >98% preference for
the five-membered ring heterocycle. The ensuing removal of the
remaining Boc group21b allowed for the generation of the
heterocyclic aromatic ring, delivering the target molecule in 90%
overall yield (for the last two-step sequence; 97:3 er). The route
depicted in Scheme 5 (11 steps, including a three-step synthesis
of 11) is shorter than the two previously disclosed
enantioselective syntheses (17−18 steps).17
We present the first general catalytic protocol for the
enantioselective synthesis of silyl-substituted homoallenylamides
and their various derivatives (including amines; cf. 14). The
approach is applicable to readily accessible aldimines. The
versatility of the approach is underscored by efficient removal of
the phosphinoyl unit while the C−Si bond is retained, and
selective reaction of the silyl-substituted allene with Br2/HOAc
without adversely impacting an Fmoc-protected amine. Another
key aspect is the possibility of converting a silyl-substituted
homoallenylamide or amine to a propargyl bromide, a versatile
electrophilic moiety that offers the possibility of a variety of
functionalization options.
(a) Lambert, C.; Schleyer, P. v. R.; Wurthwein, E. U. J. Org. Chem. 1993,
̈
58, 6377. (b) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Rodríguez-
Acebes, R. J. Org. Chem. 2001, 66, 5208. (c) Reich, H. J.; Holladay, J. E.;
Walker, T. G.; Thompson, J. L. J. Am. Chem. Soc. 1999, 121, 9769.
(d) Lin, M.-J.; Loh, T.-P. J. Am. Chem. Soc. 2003, 125, 13042. (e) Guo,
L.-N.; Gao, H.; Mayer, P.; Knochel, P. Chem.Eur. J. 2010, 16, 9829.
(9) Similar trends in allene vs propargyl addition to ketones
(nonenantioselective) have been recently reported to be the result of
the size of Cu−bisphosphine complexes involved. See: (a) Fandrick, K.
R.; Ogikubo, J.; Fandrick, D. R.; Patel, N. D.; Saha, J.; Lee, H.; Ma, S.;
Grinberg, N.; Busacca, C. A.; Senanayake, C. H. Org. Lett. 2013, 15,
1214. For a Cr-catalyzed approach to the formation of the
corresponding silyl-substituted alcohols, see: (b) Inoue, M.; Nakada,
M. Angew. Chem., Int. Ed. 2006, 45, 252.
ASSOCIATED CONTENT
* Supporting Information
■
(10) See the Supporting Information for details of the DFT
calculations.
(11) Fandrick, D. R.; Roschangar, F.; Kim, C.; Hahm, B. J.; Cha, M. H.;
Kim, H. Y.; Yoo, G.; Kim, T.; Reeves, J. T.; Song, J. J.; Tan, Z.; Qu, B.;
Haddad, N.; Shen, S.; Grinberg, N.; Lee, H.; Yee, N.; Senanayake, C. H.
Org. Process Res. Dev. 2012, 16, 1131.
S
Experimental procedures, spectral and analytical data for all
products, and crystallographic (CIF) and computational data.
This material is available free of charge via the Internet at http://
(12) Reddy, L. R. Chem. Commun. 2012, 48, 9189.
AUTHOR INFORMATION
Corresponding Author
(13) Hernandez, E.; Burgos, C. H.; Alicea, E.; Soderquist, J. A. Org. Lett.
2006, 8, 4089.
(14) As an example, subjection of 2a to 1.5 equiv of 3a and 2.0 equiv of
i-PrOH in thf at 22 °C leads to 66% conv to 5a in 1 h (4a:5a = 2:98).
(15) Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc.
2011, 133, 3332.
■
Notes
The authors declare no competing financial interest.
(16) For DFT calculations in connection with reactions involving
imidazolinium salt 1c, see the Supporting Information.
(17) (a) Patel, J.; Pelloux-Leon, N.; Minassian, F.; Vallee, Y.
́ ́
Tetrahedron Lett. 2006, 47, 5561. (b) Mukherjee, S.; Sivappa, R.;
Yousufuddin, M.; Lovely, C. J. Org. Lett. 2010, 12, 4940.
(18) See the Supporting Information for experimental details.
(19) Hughes, C. C.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. J. Org.
Chem. 2010, 75, 3240.
ACKNOWLEDGMENTS
■
Financial support was provided by the NIH (GM-57212). We are
grateful to Dr. Bo Li for his assistance with obtaining X-ray data
as well as to D. L. Silverio, E. M. Vieira, and H. Wu for helpful
discussions. We thank Boston College Research Services for
access to computational facilities.
(20) Yamaguchi, J.; Seiple, I. B.; Young, I. S.; O’Malley, D. P.; Maue,
M.; Baran, P. S. Angew. Chem., Int. Ed. 2008, 47, 3578.
(21) (a) Ermolat’ev, D. S.; Bariwal, J. B.; Steenackers, H. P. L.; De
Keersmaecker, S. C. J.; Van der Eycken, E. V. Angew. Chem., Int. Ed.
2010, 49, 9465. (b) Gainer, M. J.; Bennett, N. R.; Takahashi, Y.; Looper,
R. E. Angew. Chem., Int. Ed. 2011, 50, 684.
REFERENCES
■
(1) (a) Nugent, T. C.; El-Shazly, M. Adv. Synth. Catal. 2010, 352, 753.
(b) Chiral Amine Synthesis; Nugent, T. C., Ed.; Wiley−VCH: Weinheim,
2010.
(2) For a recent comprehensive review, see: Yus, M.; Gonzal
J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774.
́ ́
ez-Gomez,
(3) (a) Kagoshima, H.; Uzawa, T.; Akiyama, T. Chem. Lett. 2002, 31,
298. (b) Wisniewska, H. M.; Jarvo, E. R. Chem. Sci. 2011, 2, 807.
(c) Vieira, E. M.; Haeffner, F.; Snapper, M. L.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2012, 51, 6618. For a recent overview, see:
(d) Wisniewska, H. M.; Jarvo, E. R. J. Org. Chem. 2014, 78, 11629.
(4) For representative examples, see: (a) Modern Allene Chemistry,
Krause, N., Hashmi, A. S. K., Eds; Wiley−VCH: Weinheim, Germany,
2004. (b) Burks, H. E.; Liu, S.; Morken, J. P. J. Am. Chem. Soc. 2007, 129,
3365
dx.doi.org/10.1021/ja500373s | J. Am. Chem. Soc. 2014, 136, 3362−3365