Organic Letters
Letter
dron 2005, 61, 9808−9821. (e) Feng, J.; Dastgir, S.; Li, C.-J. Synthesis
of a new type of chiral N,P- and N,O-ligands. Tetrahedron Lett. 2008,
49, 668−671.
Notes
The authors declare no competing financial interest.
(5) Lian, Z.; Bhawal, B. N.; Yu, P.; Morandi, B. Palladium-catalyzed
carbon-sulfur or carbon-phosphorus bond metathesis by reversible
arylation. Science 2017, 356, 1059−1063.
ACKNOWLEDGMENTS
■
This work was supported by JSPS KAKENHI (18H01978)
and Scientific Research on Innovative Area “Hybrid Catalysis”
(18H04649)from MEXT, Japan. The authors thank Dr.
Hiroyasu Sato (Rigaku Corporation) for the single crystal X-
ray crystallographic analysis. We also wish to thank the
Instrumental Analysis Center, Faculty of Engineering, Osaka
University, for assistance with HRMS and Elemental Analyses.
(6) Baba, K.; Masuya, Y.; Chatani, N.; Tobisu, M. Palladium-
catalyzed Cyclization of Bisphosphines to Phosphacycles via the
Cleavage of Two Carbon−Phosphorus Bonds. Chem. Lett. 2017, 46,
1296−1299.
(7) Stoichiometric reactions involving cleavage of the C−P bond of
triarylphosphines: (a) Fahey, D. R.; Mahan, J. E. Reversible oxidative
addition of triphenylphosphine to zero-valent nickel and palladium
complexes. J. Am. Chem. Soc. 1976, 98, 4499−4503. (b) Sabater, S.;
Page, M. J.; Mahon, M. F.; Whittlesey, M. K. Stoichiometric and
Catalytic Reactivity of Ni(6-Mes)(PPh3)2. Organometallics 2017, 36,
1776−1783.
(8) Cao, J.; Huang, X.; Wu, L. Nickel-catalyzed manipulation of
tertiary phosphines via highly selective C−P bond cleavage. Chem.
Commun. 2013, 49, 7747−7749.
(9) (a) Sakamoto, M.; Shimizu, I.; Yamamoto, A. Palladium-
Catalyzed Cleavage of P−C Bonds in Quaternary Phosphonium Salts
and Its Applications to Organic Synthesis. Chem. Lett. 1995, 24,
1101−1102. (b) Hwang, L. K.; Na, Y.; Lee, J.; Do, Y.; Chang, S.
Tetraarylphosphonium Halides as Arylating Reagents in Pd-Catalyzed
Heck and Cross-Coupling Reactions. Angew. Chem., Int. Ed. 2005, 44,
6166−6169. (c) Zhang, X.; McNally, A. Phosphonium Salts as
Pseudohalides: Regioselective Nickel-Catalyzed Cross-Coupling of
Complex Pyridines and Diazines. Angew. Chem., Int. Ed. 2017, 56,
9833−9836.
REFERENCES
■
(1) Reviews: (a) Garrou, P. E. Transition-metal-mediated
phosphorus-carbon bond cleavage and its relevance to homogeneous
catalyst deactivation. Chem. Rev. 1985, 85, 171−185. (b) Parkins, A.
W. The migration and cleavage of substituents from donor atoms in
coordination compounds of the transition metals. Coord. Chem. Rev.
2006, 250, 449−467. (c) Macgregor, S. A. Transition metal-mediated
P−C/X exchange at bound phosphine ligands (X = aryl, alkyl, NR2,
OR and F): scope and mechanisms. Chem. Soc. Rev. 2007, 36, 67−76.
(d) Wang, L.; Chen, H.; Duan, Z. Synthetic Applications of
Transition-Metal-Catalyzed C−P Bond Cleavage. Chem. - Asian J.
2018, 13, 2164−2173. (e) Lee, Y. H.; Morandi, B. Transition metal-
mediated metathesis between P−C and M−C bonds: Beyond a side
reaction. Coord. Chem. Rev. 2019, 386, 96−118.
(2) Selected examples: (a) O’Keefe, D. F.; Dannock, M. C.;
Marcuccio, S. M. Palladium catalysed coupling of halobenzenes with
arylboronic acids: Role of the triphenylphosphine ligand. Tetrahedron
Lett. 1992, 33, 6679−6680. (b) Hunt, A. R.; Stewart, S. K.; Whiting,
A. Heck versus suzuki palladium catalysed cross-coupling of a
vinylboronate ester with aryl halides. Tetrahedron Lett. 1993, 34,
3599−3602. (c) Herrmann, W. A.; Brossmer, C.; Ofele, K.; Beller, M.;
Fischer, H. Zum mechanismus der heck-reaktion: Katalysator-
deaktivierung durch PC-bindungsbruch. J. Organomet. Chem. 1995,
491, C1−C4. (d) Herrmann, W. A.; Brossmer, C.; Ofele, K.; Beller,
(10) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent advances in
homogeneous nickel catalysis. Nature 2014, 509, 299−309.
(11) Birkholz, M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. Bite
angle effects of diphosphines in C−C and C−X bond forming cross
coupling reactions. Chem. Soc. Rev. 2009, 38, 1099−1118.
̂
̈
̈
(12) Heyn, R. H.; Gorbitz, C. H. Synthesis and Molecular Structure
of Pd2(C6F5)2[μ-P(C6F5)CH2CH2P(C6F5)2]2. A Rare Example of P−
C Bond Cleavage in a Fluoroaryl Phosphine. Organometallics 2002,
21, 2781−2784.
̈
M.; Fischer, H. Coordination chemistry and mechanisms of metal-
catalyzed CC-coupling reactions. J. Mol. Catal. A: Chem. 1995, 103,
133−146. (e) Yin, J.; Buchwald, S. L. Palladium-Catalyzed
Intermolecular Coupling of Aryl Halides and Amides. Org. Lett.
2000, 2, 1101−1104. (f) Sundermeier, M.; Zapf, A.; Beller, M.; Sans,
J. A new palladium catalyst system for the cyanation of aryl chlorides.
Tetrahedron Lett. 2001, 42, 6707−6710. (g) Ghosh, A.; Sieser, J. E.;
Riou, M.; Cai, W.; Rivera-Ruiz, L. Palladium-Catalyzed Synthesis of
N-Aryloxazolidinones from Aryl Chlorides. Org. Lett. 2003, 5, 2207−
2210. (h) Miloserdov, F. M.; McMullin, C. L.; Belmonte, M. M.;
Benet-Buchholz, J.; Bakhmutov, V. I.; Macgregor, S. A.; Grushin, V. V.
The Challenge of Palladium-Catalyzed Aromatic Azidocarbonylation:
From Mechanistic and Catalyst Deactivation Studies to a Highly
Efficient Process. Organometallics 2014, 33, 736−752.
(3) (a) Abatjoglou, A. G.; Bryant, D. R. Aryl group interchange
between triarylphosphines catalyzed by Group VIII transition metals.
Organometallics 1984, 3, 932−934. (b) An intermolecular aryl-aryl
exchange reaction using Ni(cod)2/PhI was reported to be inefficient
and result in low material balance in the SI of ref 5.
(4) (a) Kwong, F. Y.; Chan, K. S. Synthesis of Biaryl P,N Ligands by
Novel Palladium-Catalyzed Phosphination Using Triarylphosphines:
Catalytic Application of C−P Activation. Organometallics 2000, 19,
2058−2060. (b) Kwong, F. Y.; Chan, K. S. A Novel Synthesis of
Atropisomeric P,N Ligands by Catalytic Phosphination Using
Triarylphosphines. Organometallics 2001, 20, 2570−2578.
(c) Kwong, F. Y.; Yang, Q.; Mak, T. C. W.; Chan, A. S. C.; Chan,
K. S. A New Atropisomeric P,N Ligand for Rhodium-Catalyzed
Asymmetric Hydroboration. J. Org. Chem. 2002, 67, 2769−2777.
(d) Flanagan, S. P.; Goddard, R.; Guiry, P. J. The preparation and
resolution of 2-(2-pyridyl)- and 2-(2-pyrazinyl)-Quinazolinap and
their application in palladium-catalysed allylic substitution. Tetrahe-
(13) van Kalkeren, H. A.; Leenders, S. H. A. M.; Hommersom, C. R.
A.; Rutjes, F. P. J. T.; van Delft, F. L. In Situ Phosphine Oxide
Reduction: A Catalytic Appel Reaction. Chem. - Eur. J. 2011, 17,
11290−11295.
(14) van Kalkeren, H. A.; te Grotenhuis, C.; Haasjes, F. S.;
Hommersom, C. R. A.; Rutjes, F. P. J. T.; van Delft, F. L. Catalytic
Staudinger/Aza-Wittig Sequence by in situ Phosphane Oxide
Reduction. Eur. J. Org. Chem. 2013, 2013, 7059−7066.
(15) (a) O’Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter,
A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Recycling the
Waste: The Development of a Catalytic Wittig Reaction. Angew.
Chem., Int. Ed. 2009, 48, 6836−6839. (b) O’Brien, C. J.; Nixon, Z. S.;
Holohan, A. J.; Kunkel, S. R.; Tellez, J. L.; Doonan, B. J.; Coyle, E. E.;
Lavigne, F.; Kang, L. J.; Przeworski, K. C. Part I: The Development of
the Catalytic Wittig Reaction. Chem. - Eur. J. 2013, 19, 15281−15289.
(c) Schirmer, M.-L.; Adomeit, S.; Spannenberg, A.; Werner, T. Novel
Base-Free Catalytic Wittig Reaction for the Synthesis of Highly
Functionalized Alkenes. Chem. - Eur. J. 2016, 22, 2458−2465.
(d) Lee, C.-J.; Chang, T.-H.; Yu, J.-K.; Reddy, G. M.; Hsiao, M.-Y.;
Lin, W. Synthesis of Functionalized Furans via Chemoselective
Reduction/Wittig Reaction Using Catalytic Triethylamine and
Phosphine. Org. Lett. 2016, 18, 3758−3761.
(16) Buonomo, J. A.; Aldrich, C. C. Mitsunobu Reactions Catalytic
in Phosphine and a Fully Catalytic System. Angew. Chem., Int. Ed.
2015, 54, 13041−13044.
(17) Jezorek, R. L.; Zhang, N.; Leowanawat, P.; Bunner, M. H.;
Gutsche, N.; Pesti, A. K. R.; Olsen, J. T.; Percec, V. Air-Stable Nickel
Precatalysts for Fast and Quantitative Cross-Coupling of Aryl
Sulfamates with Aryl Neopentylglycolboronates at Room Temper-
ature. Org. Lett. 2014, 16, 6326−6329.
D
Org. Lett. XXXX, XXX, XXX−XXX