10.1002/adsc.201901318
Advanced Synthesis & Catalysis
mmol), [Me4 tBuXPhosAuCl]/AgOTf (0.01 mmol), 8-
ethylquinoline N-oxide (0.24 mmol) in CH3CN (1 mL). The
resulting mixture was stirred at 60 °C for 1h. Then the
solvent was removed under vacuum to give a residue, which
was purified by silica gel chromatography (petroleum
ether/ethyl acetate = 8:1) to yield the corresponding product
3a.
differentiated from: c) aurated carbenes: F. F. Mulks, P.
W. Antoni, F. Rominger, A. S. K. Hashmi, Adv. Synth.
Catal. 2018, 360, 1810-1821; d) gold carbenoids: J. M.
Sarria Toro, C. García‐Morales, M. Raducan, E. S.
Smirnova, A. M. Echavarren, Angew. Chem. Int. Ed.
2017, 56, 1859-1863 e) aurated gold carbenes.: F. F.
Mulks, P. W. Antoni, J. H. Gross, J. Graf, F. Rominger,
A. S. K. Hashmi, J. Am. Chem. Soc. 2019, 141, 4687-
4695.
Acknowledgements
[5] a) A. Padwa, Molecules 2001, 6, 1-12; b) A. Padwa, J.
Organomet. Chem. 2000, 610, 88-101; c) S. Jansone-
Popova, J. A. May, J. Am. Chem. Soc. 2012, 134, 17877-
17880.
Q. W is grateful to the CSC (ChinaScholarship Council) for a Ph.D.
fellowship.
[6] C. A. Witham, P. Mauleon, N. D. Shapiro, B. D. Sherry,
F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838-5839.
[7] a) T. Lauterbach, S. Arndt, M. Rudolph, F. Rominger, A.
S. K. Hashmi, Adv. Synth. Catal. 2013, 355, 1755-1761;
b) T. Lauterbach, S. Gatzweiler, P. Nösel, M. Rudolph,
F. Rominger, A. S. K. Hashmi, Adv. Synth. Catal. 2013,
355, 2481-2487; c) T. Lauterbach, M. Ganschow, M. W.
Hussong, M. Rudolph, F. Rominger, A. S. K. Hashmi,
Adv. Synth. Catal. 2014, 356, 680-686.
References
[1] a) Z. Li, C. Brouwer, C. He, Chem. Rev. 2008, 108,
3239-3265; b) A. Arcadi, Chem. Rev. 2008, 108, 3266-
3325; c) A. S. K. Hashmi, M. Rudolph, Chem. Soc. Rev.
2008, 37, 1766-1775; d) A. Corma, A. Leyva-Pérez, M.
J. Sabater, Chem. Rev. 2011, 111, 1657-1712; e) A. S. K.
Hashmi, Chem. Rev. 2007, 107, 3180-3211; f) A. S. K.
Hashmi, G. Hutchings, Angew. Chem. 2006, 118, 8064-
8105; Angew. Chem. Int. Ed. 2006, 45, 7896-7936.
[2] a) L. Zhang, Acc. Chem. Res. 2014, 47, 877-888; b) J.
Xiao, X. Li, Angew. Chem. 2011, 123, 7364-7375;
Angew. Chem. Int. Ed. 2011, 50, 7226-7236; c) A.
Fürstner, P. W. Davies, Angew. Chem. 2007, 119, 3478-
3519; Angew. Chem. Int. Ed. 2007, 46, 3410-3449; d) C.
W. Li, K. Pati, G. Y. Lin, S. M. A. Sohel, H. H. Hung, R.
S. Liu, Angew. Chem. 2010, 122, 10087-10090; Angew.
Chem. Int. Ed. 2010, 49, 9891-9894; e) N. D. Shapiro, F.
D. Toste, J. Am. Chem. Soc. 2007, 129, 4160-4161; f) H.
S. Yeom, J. E. Lee, S. Shin, Angew. Chem. 2008, 120,
7148-7151; Angew. Chem., Int. Ed. 2008, 47, 7040-7043;
g) G. Henrion, T. E. J. Chavas, X. Le Goff, F. Gagosz,
Angew. Chem. 2013, 125, 6397-6402; Angew. Chem., Int.
Ed. 2013, 52, 6277-6282; h) L. Wang, X. Xie, Y. Liu,
Angew. Chem. 2013, 125, 13544-13548; Angew. Chem.
Int. Ed. 2013, 52, 13302-13306; i) E. L. Noey, Y. Luo, L.
Zhang, K. N. Houk, J. Am. Chem. Soc. 2012, 134, 1078-
1084; j) X. Tian, L. Song, M. Rudolph, F. Rominger, T.
Oeser, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2019, 58,
3589-3593 ; k) X. Tian, L. Song, M. Rudolph, Q. Wang,
X. Song, F. Rominger, A. S. K. Hashmi, Org. Lett. 2019,
21, 1598-1601; l) X. Tian, L. Song, C. Han, C. Zhang, Y.
Wu, M. Rudolph, F. Rominger, A. S. K. Hashmi, Org.
Lett. 2019, 21, 2937-2940; m) X. Tian, L. Song, M.
Rudolph, F. Rominger, A. S. K. Hashmi, Org. Lett. 2019,
21, 4327-4330; n) L. Song, X. Tian, M. Rudolph, F.
Rominger, A. S. K. Hashmi, Chem. Commun. 2019, 55,
9007-9010.
[8] P. Nösel, L. N. dos Santos Comprido, T. Lauterbach, M.
Rudolph, F. Rominger, A. S. Hashmi, J. Am. Chem. Soc.
2013, 135, 15662-15666.
[9] a) H. S. Yeom,; Y. Lee, J. Jeong, E. So, S. Hwang, J. E.
Lee, S. S. Lee, S. Shin, Angew. Chem. 2010, 122, 1655-
1658; Angew. Chem., Int. Ed. 2010, 49, 1611-1614; b) S.
N. Karad, R. S. Liu, Angew. Chem. 2014, 126, 5548-
5552; Angew. Chem. Int. Ed. 2014, 53, 5444-5448.
[10] a) B. Lu, C. Li, L. Zhang, J. Am. Chem. Soc. 2010, 132,
14070-14072; b) D. Y. Li, W. Fang, Y. Wei, M. Shi,
Chem. Eur. J. 2016, 22, 18080-18084; c) Y. Horino, T.
Yamamoto, K. Ueda, S. Kuroda, F. D. Toste, J. Am.
Chem. Soc. 2009, 131, 2809-2811; d) M. R. Fructos, T.
R. Belderrain, P. de Fremont, N. M. Scott, S. P. Nolan,
M. M. Diaz-Requejo, P. J. Perez, Angew. Chem. 2005,
117, 5418-5422; Angew. Chem., Int. Ed. 2005, 44, 5284-
5288; e) Y. Wang, Z. Zheng, L. Zhang, J. Am. Chem. Soc.
2015, 137, 5316-5319.
[11] a) A. S. Hashmi, T. Wang, S. Shi, M. Rudolph, J. Org.
Chem. 2012, 77, 7761-7767; b) P. Calleja, O. Pablo, B.
Ranieri, M. Gaydou, A. Pitaval, M. Moreno, M. Raducan,
A. M. Echavarren, Chem. Eur. J. 2016, 22, 13613-13618;
c) K. Ji, B. D' Souza, J. Nelson, L. Zhang, J. Organomet.
Chem. 2014, 770, 142-145.
[12] CCDC 1843822 (3a) contains the supplementary
crystallographic data for this paper, which can be
obtained free of charge from the Cambridge
Crystallographic Data Centre.
[13] W. He, C. Li, L. Zhang, J. Am. Chem. Soc. 2011, 133,
8482-8485.
[14] Y. Wang, A. Yepremyan, S. Ghorai, R. Todd, D. H.
Aue, L. Zhang, Angew. Chem. 2005, 125, 7949-7953;
Angew. Chem. Int. Ed. 2013, 52, 7795-7799.
[15] C. Pei, C. Zhang, Y. Qian, X. Xu, Org. Biomol. Chem.
2018, 16, 8677-8685.
[3] a) S. B. Wagh, R.-S. Liu, Chem. Commun. 2015, 51,
15462-15464; b) H. Chen, L. Zhang, Angew. Chem. 2015,
127, 11941-11945; Angew. Chem. Int .Ed. 2015, 54,
11775-11779; c) K. Ji, X. Liu, B. Du, F. Yang, J. Gao,
Chem. Commun. 2015, 51, 10318-10321.
[4] a) W. Rao, M. J. Koh, D. Li, H. Hirao, P. W. H. Chan, J.
Am. Chem. Soc. 2013, 135, 7926-7932; b) C. H. Oh, J. H.
Kim, L. Piao, J. Yu, S. Y. Kim, Chem. Eur. J. 2013, 19,
10501-10505; such species clearly have to be
[16] For related work, see: H. Su, M. Bao, C. Pei, W. Hu, L.
Qiu, X. Xu, Org. Chem. Front. 2019, 6, 2404-2409.
4
This article is protected by copyright. All rights reserved.