Organic Letters
Letter
2013, 42, 5744−5767. (f) Shang, X.; Liu, Z.-Q. Chem. Soc. Rev. 2013,
42, 3253−3260. (g) Chen, D. Y.-K.; Youn, S. W. Chem.Eur. J. 2012,
18, 9452−9474. (h) Kuhl, N.; Hopkinson, M. H.; Wencel-Delord, J.;
Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236−10254.
(i) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed.
2012, 51, 8960−9009. (j) Neufeldt, S. R.; Sanford, M. S. Acc. Chem.
Res. 2012, 45, 936−946. (k) Yeung, C. S.; Dong, V. M. Chem. Rev.
2011, 111, 1215−1292.
Scheme 5. Evaluation of Deuterium Isotope Effect
(3) For seminal work, see: (a) Fujiwara, Y.; Moritani, I.; Danno, S.;
Asano, R.; Teranishi, S. J. Am. Chem. Soc. 1969, 91, 7166−7169.
(b) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 8, 1119−1122.
(4) For an excellent review, see: Le Bras, J.; Muzart, J. Chem. Rev.
2011, 111, 1170−1214.
(5) For some selected very recent examples, see: (a) Wen, Z.-K.; Xu,
Y.-H.; Loh, T.-P. Chem. Sci. 2013, 4, 4520−4524. (b) Babu, B. P.;
coordination between Pd and the carbonyl oxygen, locking the
conformation after the olefin insertion and making possible
only the β-Ha elimination (Scheme 1).7h In our biomimetic
approach, the fundamental step is the reoxidation of Pd0 to PdII
(Scheme 2b). The catalyst is simply regenerated in its active
form thanks to the involvement of catalytic amounts of BQ and
Fe(Pc) as electron-transfer mediators in the presence of
molecular oxygen at atmospheric pressure to finally complete
the catalytic cycle.
In conclusion, a selective biomimetic aerobic oxidative
dehydrogenative coupling between simple arenes and allyl
esters yielding cinnamyl derivatives has been developed. The
major advantage of this method is that molecular oxygen at
ambient pressure can be used as the oxidant. The aerobic
system employed leads to milder reaction conditions and allows
a lower catalyst loading. This transformation tolerates a wide
range of arenes, and it was applied to a late-stage arylation
strategy.
Meng, X.; Backvall, J.-E. Chem.Eur. J. 2013, 19, 4140−4145. (c) Ma,
̈
W.; Ackermann, L. Chem.Eur. J. 2013, 19, 13925−13928. (d) Dai,
H.-X.; Li, G.; Zhang, X.-G.; Stepan, A. F.; Yu, J.-Q. J. Am. Chem. Soc.
2013, 135, 7567−7571. (e) Moon, Y.; Kwon, D.; Hong, S. Angew.
Chem., Int. Ed. 2012, 51, 11333−11336. (f) Shi, Z.; Schroder, N.;
̈
Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 8092−8096. (g) Pankajak-
shan, S.; Xu, Y.-H.; Chang, J. K.; Low, M. T.; Loh, T.-P. Angew. Chem.,
Int. Ed. 2012, 51, 5701−5705. (h) Vasseur, A.; Harakat, D.; Muzart, J.;
Le Bras, J. J. Org. Chem. 2012, 77, 5751−5758. (i) Gigant, N.;
Gillaizeau, I. Org. Lett. 2012, 14, 3304−3307. (j) García-Rubia, A.;
́
Urones, B.; Arrayas, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2011,
50, 10927−10931. (k) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q.
Science 2010, 327, 315−319.
(6) Poli, G.; Prestat, G.; Liron, F.; Kammerer-Pentier, C. Top.
Organomet. Chem. 2012, 38, 1−64.
(7) For successful approaches, see: (a) Yao, B.; Liu, Y.; Wang, M.-K.;
Li, J.-H.; Tang, R.-Y.; Zhang, X.-G.; Deng, C.-L. Adv. Synth. Catal.
2012, 354, 1069−1076. (b) Zhang, Y.; Li, Z.; Liu, Z.-Q. Org. Lett.
2012, 14, 226−229. (c) Li, Z.; Zhang, Y.; Liu, Z.-Q. Org. Lett. 2012,
14, 74−77. (d) Shang, X.; Xiong, Y.; Zhang, Y.; Zhang, L.; Liu, Z.
Synlett 2012, 259−262. (e) Pan, D.; Jiao, N. Synlett 2010, 1577−1588.
(f) Pan, D.; Yu, M.; Chen, W.; Jiao, N. Chem.Asian J. 2010, 5,
1090−1093. (g) Su, Y.; Jiao, N. Org. Lett. 2009, 11, 2980−2983.
(h) Pan, D.; Chen, A.; Su, Y.; Zhou, W.; Li, S.; Jia, W.; Xiao, J.; Liu, Q.;
Zhang, L.; Jioa, N. Angew. Chem., Int. Ed. 2008, 47, 4729−4732.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and full characterization details
including 1H and 13C NMR and HRMS. This material is
(8) (a) Volla, C. M. R.; Backvall, J.-E. Angew. Chem., Int. Ed. 2013, 52,
̈
14209−14213. (b) Gigant, N.; Backvall, J.-E. Chem.Eur. J. 2013, 19,
̈
10799−10803. (c) Endo, Y.; Backvall, J.-E. Chem.Eur. J. 2012, 18,
̈
AUTHOR INFORMATION
Corresponding Author
■
13609−13613. (d) Babu, B. P.; Endo, Y.; Backvall, J.-E. Chem.Eur. J.
̈
2012, 18, 11524−11527. (e) Endo, Y.; Backvall, J.-E. Chem.Eur. J.
̈
́
Notes
2011, 17, 12596−12601. (f) Persson, A. K. Å.; Backvall, J.-E. Angew.
̈
Chem., Int. Ed. 2010, 49, 4624−4627. (g) Piera, J.; Persson, A.;
Caldentey, X.; Backvall, J.-E. J. Am. Chem. Soc. 2007, 129, 14120−
̈
The authors declare no competing financial interest.
14121.
(9) For a recent review, see: Piera, J.; Backvall, J.-E. Angew. Chem., Int.
Ed. 2008, 47, 3506−3523.
(10) See the Supporting Information for more details.
̈
ACKNOWLEDGMENTS
■
Financial support from the European Research Council (ERC
AdG 247014), The Swedish Research Council, and The Knut
and Alice Wallenberg Foundation is gratefully acknowledged.
REFERENCES
■
(1) For some recent examples, see: (a) Yokosaka, T.; Nakayama, H.;
Nemoto, T.; Hamada, Y. Org. Lett. 2013, 15, 2978−2981. (b) Olsen,
L. R.; Grillo, M. P.; Skonberg, C. Chem. Res. Toxicol. 2011, 24, 992−
1002. (c) Kurata, H.; Otsuki, K.; Kusumi, K.; Kurono, M.; Terakado,
M.; Seko, T.; Mizuno, H.; Ono, T.; Hagiya, H.; Minami, M.; Nakade,
S.; Habashita, H. Bioorg. Med. Chem. Lett. 2011, 21, 1390−1393.
(d) Chen, J.-J.; Chen, P.-H.; Liao, C.-H.; Huang, S.-Y.; Chen, I.-S. J.
Nat. Prod. 2007, 70, 1444−1448.
(2) For selected recent reviews, see: (a) Zhou, L.; Lu, W. Chem.
Eur. J. 2014, 20, 634−642. (b) Wu, Y.; Wang, J.; Mao, F.; Kwong, F. K.
Chem. Asian. J. 2014, 9, 26−47. (c) Peng, B.; Maulide, N. Chem.Eur.
J. 2013, 19, 13274−13287. (d) Wencel-Delord, J.; Glorius, F. Nature
Chem. 2013, 5, 369−375. (e) Li, B.; Dixneuf, P. H. Chem. Soc. Rev.
1667
dx.doi.org/10.1021/ol500326g | Org. Lett. 2014, 16, 1664−1667