Organometallics
Article
refinement program SHELXL-2014.41b The phosphorus-bound hydro-
gen atom in 7 was located from a difference Fourier map, and its
coordinates and isotropic displacement parameter were freely refined.
All other hydrogens were generated in idealized positions on the basis
of the sp2 or sp3 geometries of their attached carbons and given
isotropic displacement parameters 120% of the Ueq values for their
parent C atoms.
Catalyst Screening and Associated Control Reactions.
General Procedure for Catalytic Runs. To 1 equiv of catalyst (0.02
mmol) in a J. Young NMR tube was added 1 equiv of DBU (0.2 mL,
0.1 M in THF), 10 equiv of alkene (0.2 mL, 1.0 M in THF), and 10
equiv of HPR2 (0.2 mL, 1.0 M in THF) and d6-benzene (0.2 mL).
Each reaction was performed in triplicate; conversions and product
ratios were determined from relative integrations of the product and
free secondary phosphine signals in 31P{1H} NMR spectra obtained
using a gated decoupled experiment with a relaxation delay of 55 s.
General Procedure for Control Reactions. To 0.2 mL of C6D6 in a
J. Young NMR tube was added two or more of 0.02 mmol of a Ru
catalyst, 0.2 mL of HPR2, alkene (1.0 M in THF, 10 equiv), or DBU
(0.1 M in THF, 1 equiv). In reactions where one or two reagents were
left out, the corresponding volume of THF (0.2 or 0.4 mL) was added
to maintain the same concentrations as would be present in the
catalytic reactions described above. The reactions were monitored by
31P{1H} NMR, using the quantitative pulse sequence where necessary.
(d) Wauters, I.; Debrouwer, W.; Stevens, C. V. Beilstein J. Org.
Chem. 2014, 10, 1064−1096.
(2) Recent reviews of catalytic hydrophosphination include:
(a) Rosenberg, L. ACS Catal. 2013, 3, 2845−2855. (b) Koshti, V.;
Gaikwad, S.; Chikkali, S. H. Coord. Chem. Rev. 2014, 265, 52−73.
(c) Greenhalgh, M. D.; Jones, A. S.; Thomas, S. P. ChemCatChem
2015, 7, 190−222. (d) Rodriguez-Ruiz, V.; Carlino, R.; Bezzenine-
Lafollee, S.; Gil, R.; Prim, D.; Schulz, E.; Hannedouche, J. Dalton
Trans. 2015, 44, 12029−12059.
(3) This mechanism was originally delineated by Marks: (a) Douglass,
M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 2001, 123, 10221−
10238. (b) Motta, A.; Fragala, I. L.; Marks, T. J. Organometallics 2005,
24, 4995−5003. Recent examples of alkene hydrophosphination
catalyzed by electron-deficient metals include: (c) Liu, B.; Roisnel, T.;
Carpentier, J. F.; Sarazin, Y. Chem. - Eur. J. 2013, 19, 13445−13462.
(d) Ghebreab, M. B.; Bange, C. A.; Waterman, R. J. Am. Chem. Soc.
2014, 136, 9240−9243. (e) Basalov, I. V.; Dorcet, V.; Fukin, G. K.;
Carpentier, J. F.; Sarazin, Y.; Trifonov, A. A. Chem. - Eur. J. 2015, 21,
6033−6036. (f) Kissel, A. A.; Mahrova, T. V.; Lyubov, D. M.;
Cherkasov, A. V.; Fukin, G. K.; Trifonov, A. A.; Del Rosal, I.; Maron,
L. Dalton Trans. 2015, 44, 12137−12148.
(4) This mechanism has been studied in-depth by Glueck for Pt-
based catalysts: (a) Scriban, C.; Kovacik, I.; Glueck, D. S.
Organometallics 2005, 24, 4871−4874. (b) Scriban, C.; Glueck, D.
S.; Zakharov, L. N.; Kassel, W. S.; DiPasquale, A. G.; Golen, J. A.;
Rheingold, A. L. Organometallics 2006, 25, 5757−5767. Recent
examples of alkene hydrophosphination catalyzed by electron-rich
metals include: (c) Chew, R. J.; Teo, K. Y.; Huang, Y. H.; Li, B. B.; Li,
Y. X.; Pullarkat, S. A.; Leung, P. H. Chem. Commun. 2014, 50, 8768−
8770. (d) Gallagher, K. J.; Webster, R. L. Chem. Commun. 2014, 50,
12109. (e) Hao, X. Q.; Huang, J. J.; Wang, T.; Lv, J.; Gong, J. F.; Song,
M. P. J. Org. Chem. 2014, 79, 9512−12111. (f) Isley, N. A.; Linstadt, R.
T. H.; Slack, E. D.; Lipshutz, B. H. Dalton Trans. 2014, 43, 13196−
13200. (g) Brown, C. A.; Nile, T. A.; Mahon, M. F.; Webster, R. L.
Dalton Trans. 2015, 44, 12189−12195. (h) Geer, A. M.; Serrano, A. L.;
de Bruin, B.; Ciriano, M. A.; Tejel, C. Angew. Chem., Int. Ed. 2015, 54,
472−475. (i) Xu, Y.; Yang, Z. H.; Ding, B. Q.; Liu, D. L.; Liu, Y. G.;
Sugiya, M.; Imamoto, T.; Zhang, W. B. Tetrahedron 2015, 71, 6832−
6839. (j) Yang, X. Y.; Gan, J. H.; Li, Y. X.; Pullarkat, S. A.; Leung, P. H.
Dalton Trans. 2015, 44, 1258−1263.
The results of these reactions are shown in Table 2 and/or
described in the text, and representative spectra are included in the
Thermolysis of Complex 9 Monitored by 31P{1H} NMR. A
solution of 9 (20 mg, 0.024 mmol) in d8-toluene was placed in a flame-
sealable NMR tube, degassed by three freeze−pump−thaw cycles, and
sealed under vacuum. An initial 31P{1H} NMR spectrum was obtained.
The solution was heated at 60 °C in an oil bath and removed
periodically for monitoring by 31P{1H} NMR. After 96 h,
approximately 50% of 9 had decomposed, giving the ortho-metalated
complex [Ru(η5-indenyl){κ2-(o-C6H4)PPh2}(PPh2H)] as well as free
PPh3 and a corresponding complex tentatively identified as Ru(η5-
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(5) (a) Derrah, E. J.; Pantazis, D. A.; McDonald, R.; Rosenberg, L.
Organometallics 2007, 26, 1473−1482. (b) Derrah, E. J.; Giesbrecht, K.
E.; McDonald, R.; Rosenberg, L. Organometallics 2008, 27, 5025−
5032.
Crystallographic data for complexes 6 and 7 (CIF)
Additional experimental details, including NMR spectra
of new compounds and representative product mixtures,
and crystallographic data for complexes 6 and 7 (PDF)
(6) Derrah, E. J.; Pantazis, D. A.; McDonald, R.; Rosenberg, L.
Angew. Chem., Int. Ed. 2010, 49, 3367−3370.
(7) Morrow, K. M. E., M.Sc. Thesis, University of Victoria, 2012.
(8) Malisch, W.; Klupfel, B.; Schumacher, D.; Nieger, M. J.
Organomet. Chem. 2002, 661, 95−110.
AUTHOR INFORMATION
Corresponding Author
(9) See: Chew, R. J.; Li, X. R.; Li, Y. X.; Pullarkat, S. A.; Leung, P. H.
Chem. - Eur. J. 2015, 21, 4800−4804 as well as refs 4a and 4j and
references therein..
■
(10) Issleib, K.; Kummel, R. J. Organomet. Chem. 1965, 3, 84−91.
(11) Stewart, R. The Proton: Applications to Organic Chemistry;
Academic Press: Orlando, FL, 1985; Chapter 2.
Notes
The authors declare no competing financial interest.
§Nee
́
Morrow.
(12) Rodima, T.; Kaljurand, I.; Pihl, A.; Maemets, V.; Leito, I.;
Koppel, I. A. J. Org. Chem. 2002, 67, 1873−1881.
ACKNOWLEDGMENTS
(13) Kolthoff, I. M.; Chantooni, M. K., Jr; Bhowmik, S. J. Am. Chem.
Soc. 1968, 90, 23−28.
■
We thank the NSERC of Canada for financial support
(Discovery Grant to L.R., CGS-M to R.G.B.) and Bochao
(Chris) Huang for preparing complex 5 and carrying out its
reactions with DBU.
(14) Sues, P. E.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2014,
136, 4746−4760.
(15) Kaupmees, K.; Trummal, A.; Leito, I. Croat. Chem. Acta 2014,
87, 385−395.
(16) Our continued assessment of reagents for this synthetic cycle
includes the addition of organic acids (pKa ≈ 11−14) containing
weakly coordinating counterions to isolated metallacycles 3 in the
presence of excess secondary phosphine. Preliminary experiments
REFERENCES
■
(1) (a) Quin, L. D. A Guide to Organophosphorus Chemistry; Wiley:
Hoboken, NJ, 2000. Other leading references include: (b) Crepy, K.
V. L.; Imamoto, T. Top. Curr. Chem. 2003, 229, 1−40. (c) Delacroix,
O.; Gaumont, A. C. Curr. Org. Chem. 2005, 9, 1851−1882.
−
using [lutidine·H]+BF4 in CH2Cl2 in the absence of secondary
phosphine gave mixed and somewhat messy results, which may be
H
Organometallics XXXX, XXX, XXX−XXX