Moreover, the mannosyl-CM selectively bind and cluster E. coli
strain containing the corresponding lectin. We have also shown
that encapsulation of TTCL by the targeted microspheres
significantly increased the toxicity of the drug to bacteria that
express mannose-binding protein. This method could be easily
generalized for the preparation of other microspheres containing
different targetable ligands on their surface that can be applicable
for selective drug delivery and imaging purposes. However,
further experiments are needed to probe the toxicity, immuno-
genicity and pharmacokinetics of the conjugated microspheres in
related animal models.
Notes and references
1 (a) S. Pechenov, B. Shenoy, M. X. Yang, S. K. Basu and
A. L. Margolin, J. Controlled Release, 2004, 96, 149–158;
(b) Y. F. Maa, P. A. Nguyen, T. Sweeney, S. J. Shire and
C. C. Hsu, Pharm. Res., 1999, 16, 249–254; (c) D. V. Volodkin,
R. von Klitzing and H. Mohwald, Angew. Chem., Int. Ed., 2010, 49,
9258–9261; (d) U. Scheffel, B. A. Rhodes, T. K. Natarajan and
H. N. Wagner, Jr., J. Nucl. Med., 1972, 13, 498–503;
(e) B. A. Rhodes and B. Y. Croft, Basics of Radiopharmacy,
St. Louis, MO, USA, 1978.
2 (a) K. S. Suslick and M. W. Grinstaff, J. Am. Chem. Soc., 1990,
112, 7807–7809; (b) M. W. Grinstaff and K. S. Suslick, Proc. Natl.
Acad. Sci. U. S. A., 1991, 88, 7708–7710.
3 A. Weissler, J. Am. Chem. Soc., 1959, 81, 1077–1081.
4 M. Wong and K. S. Suslick, MRS Online Proc. LIbr., 1995, 372, 89–94.
5 (a) S. Avivi and A. Gedanken, Biochem. J., 2002, 366, 705–707;
(b) S. Avivi Levi and A. Gedanken, Ultrason. Sonochem., 2007, 14,
1–5; (c) E. M. Dibbern, F. J. J. Toublan and K. S. Suslick, J. Am.
Chem. Soc., 2006, 128, 6540–6541.
Fig. 3 Association of the mannosyl-CM with the E. coli strains and the
corresponding antibacterial activity of the TTCL encapsulated microspheres.
Optical micrographs of mannosyl-CM incubated with (a) FimH expressing
E. coli strain K-12 and (b) the strain 1313 that is deficient of FimH protein.
Antibacterial activity of TTCL-encapsulated mannosyl-CM (m) and
TTCL-encapsulated naked BSA microspheres (K) toward the E. coli strains
(c) K-12 and (d) 1313. The concentration of TTCL in the mannosyl-CM
and BSA microspheres was 0.11 and 0.12 mg mlÀ1, respectively.
The antimicrobial activity of the TTCL-loaded BSA micro-
spheres and loaded mannosyl-CM was then tested on the two
E. coli strains, K-12 and 1313, using the broth microdilution assay.18
The bacteria (1 Â 105 cfu mlÀ1) were incubated for 20 hours
with different amounts of TTCL-encapsulated microspheres,
and the bacterial growth was then monitored spectroscopically
at 595 nm. The unconjugated BSA microspheres loaded with TTCL
showed similar antibacterial activity (MIC, minimal inhibitory
concentration of 7.2 mg mlÀ1) against both the bacterial strains.
This suggests that the BSA microspheres induce low selectivity
to TTCL activity. In contrast, mannosyl-CM that selectively
binds the E. coli strain K-12 (Fig. 3a) significantly increased
the antibacterial activity of TTCL to the K-12 strain (MIC of
3.3 mg mlÀ1), most likely due to the selective interaction of the
microspheres with this strain. In the control experiments,
TTCL-loaded mannosyl-CM failed to exhibit selective antibacterial
activity toward the E. coli strain 1313 (Fig. 3d), confirming
that the mannosyl derivative 3 is responsible for the selectivity.
Interestingly, the MIC of free TTCL to both strains was found
to be about 17 mg mlÀ1. This indicates that TTCL alone is unable
to differentiate between the two strains and encapsulation of TTCL
to the microspheres preserved or even increased its antibacterial
activity. Moreover, these data imply that the content of the
microspheres is stable toward sonochemical irradiation and is
likely to be fully released upon interaction with the bacteria.9a
In summary, sonochemical irradiation of an aqueous mixture
of BSA and a thiolated mannosyl derivative can generate
proteinaceous core–shells expressing the mannosyl groups
covalently on their shells. The microspheres can easily encap-
sulate different compounds that are dissolved or suspended in
the organic phase prior to the sonochemical process. The
conjugated mannosyl groups preserved their biological activity
as the microspheres could effectively interact with Con A protein.
6 N. Skirtenko, T. Tzanov, A. Gedanken and S. Rahimipour,
Chem.–Eur. J., 2010, 16, 562–567.
7 (a) C. Christiansen, A. J. Vebner, B. Muan, H. Vik, T. Haider,
H. Nicolaysen and T. Skotland, Int. Arch. Allergy Immunol., 1994, 104,
372–378; (b) B. Geny, P. Bischoff, B. Muan, F. Piquard, J. C. Thiranos,
E. Epailly, M. Lambrechs, A. Juelsrud-Vebner, B. Eisenmann and
P. Haberey, Clin. Cardiol., 1997, 20, 111–115; (c) Y. Z. Hu, J. A. Zhu,
Y. G. Jiang and B. Hu, Adv. Ther., 2009, 26, 425–434.
8 K. J. Liu, M. W. Grinstaff, J. J. Jiang, K. S. Suslick, H. M. Swartz
and W. Wang, Biophys. J., 1994, 67, 896–901.
9 (a) S. Avivi, Y. Nitzan, R. Dror and A. Gedanken, J. Am. Chem.
Soc., 2003, 125, 15712–15713; (b) O. Grinberg, M. Hayun,
B. Sredni and A. Gedanken, Ultrason. Sonochem., 2007, 14,
661–666; (c) Y. Ozkan, N. Dikmen, A. Isimer, O. Gunhan and
H. Y. Aboul-Enein, Farmaco, 2000, 55, 303–307; (d) P. Walday,
H. Tolleshaug, T. Gjoen, G. M. Kindberg, T. Berg, T. Skotland
and E. Holtz, Biochem. J., 1994, 299, 437–443.
10 F. J. Toublan, S. Boppart and K. S. Suslick, J. Am. Chem. Soc.,
2006, 128, 3472–3473.
11 (a) R. A. Dwek, T. D. Butters, F. M. Platt and N. Zitzmann, Nat.
Rev. Drug Discovery, 2002, 1, 65–75; (b) K. M. Koeller and
C. H. Wong, Nat. Biotechnol., 2000, 18, 835–841.
12 (a) H. Lis and N. Sharon, Chem. Rev., 1998, 98, 637–674;
(b) M. Mammen, S.-K. Choi and G. M. Whitesides, Angew. Chem.,
Int. Ed., 1998, 37, 2754–2794.
13 C. R. Bertozzi and L. L. Kiessling, Science, 2001, 291, 2357–2364.
14 (a) J. E. Gestwicki, L. E. Strong and L. L. Kiessling, Chem. Biol., 2000, 7,
583–591; (b) M. D. Disney, J. Zheng, T. M. Swager and P. H. Seeberger,
J. Am. Chem. Soc., 2004, 126, 13343–13346; (c) C. C. Lin, Y. C. Yeh,
C. Y. Yang, C. L. Chen, G. F. Chen, C. C. Chen and Y. C. Wu, J. Am.
Chem. Soc., 2002, 124, 3508–3509; (d) M. K. Muller and L. Brunsveld,
Angew. Chem., Int. Ed., 2009, 48, 2921–2924.
15 L. Motiei, S. Rahimipour, D. A. Thayer, C. H. Wong and
M. R. Ghadiri, Chem. Commun., 2009, 3693–3695.
16 T. L. Kelly, M. C. Lam and M. O. Wolf, Bioconjugate Chem., 2006,
17, 575–578.
17 T. M. Allen and P. R. Cullis, Science, 2004, 303, 1818–1822.
18 Methods for dilution antimicrobial susceptibility tests for bacteria
that grow aerobically, 4th edn. Approved standard NCCLS
Document M7-A4, vol. 17, Wayne, PA, January 1997.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12277–12279 12279