Page 3 of 4
Journal of the American Chemical Society
at 0 oC. bConversions are for compound 11, estimated by 1H NMR. cer
3438. (c) Osaki, M.; Takashima, Y.; Yamaguchi, H.; Harada, A.; J. Am.
Chem. Soc. 2007, 129, 14452. (d) Berná, J.; Alajarín, M.; Orenes, R.-A.
J. Am. Chem. Soc. 2010, 132, 10741. (e) Miyagawa, N.; Watanabe, M.;
Matsuyama, T.; Koyama, Y.; Moriuchi, T.; Hirao, T.; Furusho, Y.;
Takata, T. Chem. Commun. 2010, 46, 1920. (f) Tachibana, Y.; Kihara,
N.; Nakazono, K.; Takata, T. Phosphorus, Sulfur, Silicon Relat. Elem.
2010, 185, 1182. (g) Suzaki, Y.; Shimada, K.; Chihara, E.; Saito, T.;
Tsuchido, Y.; Osakada, K. Org. Lett. 2011, 13, 3774. (h) Takashima, Y.;
Osaki, M.; Ishimaru, Y.; Yamaguchi, H.; Harada, A. Angew. Chem.
Int. Ed. 2011, 50, 7524. (i) Caputo, C. B.; Zhu, K.; Vukotic, V. N.; Loeb,
S. J.; Stephan, D. W. Angew. Chem., Int. Ed. 2013, 52, 960.
(3) (a) Blanco, V.; Carlone, A.; Hänni, K. D.; Leigh, D. A.; Lewan-
dowski, B. Angew. Chem. Int. Ed. 2012, 51, 5166. (b) Blanco, V.; Leigh,
D. A.; Marcos, V.; Morales-Serna, J. A.; Nussbaumer, A. L. J. Am.
Chem. Soc. 2014, 136, 4905. (c) Blanco, V.; Leigh, D. A.; Lewandow-
ska, U.; Lewandowski, B.; Marcos, V. J. Am. Chem. Soc. 2014, 136,
15775. (d) Beswick, J.; Blanco, V.; De Bo, G.; Leigh, D. A.; Lewandow-
ska, U.; Lewandowski, B.; Mishiro, K. Chem. Sci. 2015, 6, 140.
(4) (a) Thordarson, P.; Bijsterveld, E. J. A.; Rowan, A. E.; Nolte, R.
J. M. Nature, 2003, 424, 915. (b) Coumans, R. G. E.; Elemans, J. A. A.
W.; Nolte, R. J. M.; Rowan, A. E.; Proc. Natl. Acad. Sci. U.S.A. 2006,
103, 19647. (c) Deutman, A. B. C.; Monnereau, C.; Elemans, J. A. A.
W.; Ercolani, G.; Nolte, R. J. M.; Rowan, A. E. Science, 2008, 322,
1668. (d) Miyagawa, N.; Watanabe, M.; Matsuyama, T.; Koyama, Y.;
Moriuchi, T.; Hirao, T.; Furusho, Y.; Takata, T. Chem. Commun. 2010,
46, 1920. (e) van Dongen, S. F. M.; Clerx, J.; Nørgaard, K.; Bloemberg,
T. G.; Cornelissen, J. J. L. M.; Trakselis, M. A.; Nelson, S. W.; Ben-
kovic, S. J.; Rowan, A. E.; Nolte, R. J. M. Nat. Chem. 2013, 5, 945.
(5) (a) Lewandoswki, B.; De Bo, G.; Ward, J. W.; Papmeyer, M.;
Kuschel, S.; Aldegunde, M. J.; Gramlich, P. M. E.; Heckmann, D.;
Goldup, S. M.; D’Souza, D. M.; Fernandes, A. E.; Leigh, D. A. Science,
2013, 339, 189. (b) De Bo, G.; Kuschel, S.; Leigh, D. A.; Lewandowski,
B.; Papmeyer, M.; Ward, J. W. J. Am. Chem. Soc. 2014, 136, 5811.
(6) Hoekman, S.; Kitching, M. O.; Leigh, D. A.; Papmeyer, M.;
Roke, D. J. Am. Chem. Soc. 2015, 137, 7656.
values determined by HPLC after 24 h. d84 % ee.
1
2
3
4
5
6
7
8
To investigate the effectiveness of these mechanically
point-chiral catalysts using a different activation mode, we
examined the efficacy of (S)-1 in an enamine-mediated α-
amination reaction (Table 2). Dibenzyl azodicarboxylate (10)
was employed as a nitrogen electrophile and reacted with
aldehydes possessing various substituents (9a-c, Table 2).
Due to the configurational instability of the α-aminated
products (11a-c), the enantioselectivity of the rotaxane-
catalyzed reaction was assessed after reduction to the corre-
sponding alcohol (12a-c).11 The result was enantiomeric ratios
of up to 71:29 er (entry 3, Table 2), similar to those obtained
in the iminium activation mode catalyzed reaction (Table 1).
The point chirality previously exploited in asymmetric ca-
talysis has invariably arisen from four different covalent
groups attached to the tetrahedral center. Our results show
that point chirality induced by mechanical bonding between
an achiral macrocycle and an achiral thread can also be used
to generate a chiral space suitable for asymmetric catalysis.
We anticipate that the expression of mechanically generated
chirality for asymmetric catalysis, either by ligated metals or
through organocatalysis, may be further enhanced through
the structural optimization of the rotaxane components.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Additional figures and tables, experimental details, synthetic
procedures and characterization data are available in The
Supporting Information. This material is available free of
(7) (a) Galli, M.; Lewis, J. E. M.; Goldup, S. M. Angew. Chem. Int.
Ed. 2015, 54, 13545. (b) Lee, A.-L.; Nature Chem. 2016, 8, 8.
(8) For examples of rotaxanes that are mechanically chiral by vir-
tue of the two ends of the axle being inequivalent and the macrocy-
cle rotationally unsymmetrical (‘mechanical planar chirality’ or
‘cyclochirality’), see: (a) Yamamoto, C.; Okamoto, Y.; Schmidt, T.;
Jäger, R.; Vögtle, F. J. Am. Chem. Soc. 1997, 119, 10547. (b) Schmieder,
R.; Hübner, G.; Seel, C.; Vögtle, F. Angew. Chem., Int. Ed. 1999, 38,
3528. (c) Reuter, C.; Seel, C.; Nieger, M.; Vögtle, F. Helv. Chim. Acta
2000, 83, 630. (d) Kishan, M. R.; Parham, A.; Schelhase, F.; Yoneva,
A.; Silva, G.; Chen, X.; Okamoto, Y.; Vögtle, F. Angew. Chem., Int. Ed.
2006, 45, 7296. (e) Kameta, N.; Nagawa, Y.; Karikomi, M.; Hiratani,
K. Chem. Commun. 2006, 3714. (f) Makita, Y.; Kihara, N.; Nakakoji,
N.; Takata, T.; Inagaki, S.; Yamamoto, C.; Okamoto, Y. Chem. Lett.
2007, 36, 162. (g) Glen, P. E.; O’Neill, J. A. T.; Lee, A.-L. Tetrahedron
2013, 69, 57. (h) Bordoli, R.; Goldup, S. M. J. Am. Chem. Soc. 2014,
136, 4817. For rotaxanes that exhibit mechanical sequence isomerism,
see: (i) Fuller, A.-M. L.; Leigh, D. A.; Lusby, P. J. J. Am. Chem. Soc.
2010, 132, 4954.
(9) Stereoisomerism that arises through the restriction of compo-
nent dynamics in mechanically interlocked structures, as opposed to
that arising through sequence information in the constitution of the
components (see ref (8a-h)), is conceptually similar to atropisomer-
ism, which formally only refers to restricted rotation about single
bonds.
(10) (a) Chatterjee, M. N.; Kay, E. R.; Leigh, D. A. J. Am. Chem. Soc.
2006, 128, 4058. (b) Alvarez-Pérez, M.; Goldup, S. M.; Leigh, D. A.;
Slawin, A. M. Z. J. Am. Chem. Soc. 2008, 130, 1836. (c) Carlone, A.;
Goldup, S. M.; Lebrasseur, N.; Leigh, D. A.; Wilson, A. J. Am. Chem.
Soc. 2012, 134, 8321.
AUTHOR INFORMATION
Corresponding Author
Author Contributions
‡These authors contributed equally.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Y.C. and S.E.-C are grateful to the EU for Marie Curie Action
Intra-European Postdoctoral Fellowships. We thank the ERC
and the EPSRC for funding and the EPSRC National Mass
Spectrometry Centre (Swansea, UK) for high resolution mass
spectrometry.
REFERENCES
(1) (a) Neal, E. A.; Goldup, S. M. Chem. Commun. 2014, 50, 5128.
(b) van Dongen, S. F. M.; Cantekin, S.; Elemans, J. A. A. W.; Rowan,
A. E.; Nolte, R. J. M. Chem. Soc. Rev. 2014, 43, 99. (c) Xue, M.; Yang,
Y.; Chi, X.; Yan, X.; Huang, F. Chem. Rev. 2015, 115, 7398. (d) Erbas-
Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. Chem.
Rev. 2015, 115, 10081.
(2) (a) Leigh, D. A.; Marcos, V.; Wilson, M. R. ACS Catal. 2014, 4,
4490. For examples of rotaxane catalysts, see refs (3)-(7) and: (b)
Tachibana, Y.; Kihara, N.; Takata, T. J. Am. Chem. Soc. 2004, 126,
(11) (a) List, B. J. Am. Chem. Soc. 2002, 124, 5656. (b) Bøgevig, A.;
Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Angew.
Chem. Int. Ed. 2002, 41, 1790. (c) Mukherjee, S.; Jang, J. W.; Hoff-
mann, S; List, B. Chem. Rev. 2007, 107, 5471.
ACS Paragon Plus Environment