10.1002/chem.201605914
Chemistry - A European Journal
COMMUNICATION
that the novel free singlet phosphindole-yne ligand (Singlet/Triplet
gap ∆S/T = 25.5 kcal/mol) is only stable bound to a transition
metal center. Upon dissociation of the metal a low lying transition
state of ca. ∆G‡ = 1 kcal/mol leads back to the thermodynamically
more favorable phosphaalkyne (∆G = -29.2 kcal/mol) (see SI;
Figure S1). Interestingly, the transition state energy for the
cyclization event is similar high (∆G‡ = 29.7 kcal/mol) employing
the Au+-NHC fragment, taking into account the non-favored
dissociation of the P-Au bond (Figure 7). However, in this case
the phosphindole-yne ligand is trapped at the transition metal
therefore leading to a more stable complex (∆G = -3.9 kcal/mol).
calculated to be endergonic by +6.5 kcal/mol at the same level of
theory (B3LYP-D3BJ/cc-pVDZ) (see SI; Figure S3). Taking into
account the polar reaction medium (SMD calculation with
bromobenzene) leads to a similar thermodynamic stability of the
starting material compared to the cyclization product
(∆G = -0.1 kcal/mol) highlighting the importance of the polarity of
the solvent in this transformation.
In summary, we could demonstrate that the elementary step of
an anti-phosphinoauration is feasible leading to a novel class of
phosphindolium ligands. This new elementary step for gold
chemistry might open up new synthetic perspectives also with
regard to catalytic processes. For the best conversion rates it was
found that sterically bulky ligands surrounding the gold center are
beneficially in conclusion with an FLP approach. However, at
elevated temperatures even the cyclization with AuCl takes place
to generate the new phosphindolium ligand framework. The
reaction provides structurally and valuable phosphindolium
complexes in high yields and selectivity.
Acknowledgements
The authors thank Umicore AG & Co. KG for the generous
donation of gold salts. MMH is grateful to the Fonds der
chemischen Industrie for a Chemiefonds scholarship and the
Studienstiftung des deutschen Volkes. PM would like to thank
Nadace Sophia, Karel Dvořák and Verbindung Rupertia for their
support.
Figure 7. Calculated energy profile at the B3LYP-D3BJ/cc-pVDZ level.
Keywords: gold • frustrated Lewis pair • alkynes • phosphines
When calculating the energy profile employing the AuCl precursor
it should be noted that the initial cyclization complex was
1 A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; b) A. Arcadi,
Chem. Rev. 2008, 108, 3266-3325; c) Z. Li, C. Brouwer, C. He,
Chem. Rev. 2008, 108, 3239-3265; d) A. Fürstner, Chem. Soc.
Rev. 2009, 38, 3208-3221; e) A. S. K. Hashmi, F. D. Toste, Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, 2012, pp. 1-402; f) X.
Zeng, Chem. Rev. 2013, 113, 6864–6900; g) R. Dorel, A. M.
Echavarren, Chem. Rev. 2015, 115, 9028-9072.
12 For metal catalyzed hydrophosphination reactions, see: a) C. A.
Bange and R. Waterman, Chem. Eur. J. 2016, 22, 12598-12605
b) V. Koshti, S. Gaikwad and S. H. Chikkali, Coord. Chem. Rev.
2014, 265, 52-73; c) I. Wauters, W. Debrouwer, C. V. Stevens, J.
Org. Chem. 2014, 10, 1064-1096.
13 D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-
6441.
2 R. A. Widenhoefer, X. Han, Eur. J. Org. Chem. 2006, 4555-4563.
14 a) M. A. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2009, 131,
8396-8397; b) M. A. Dureen, C. C. Brown, D. W. Stephan,
Organometallics 2010, 29, 6594-6607; c) C. Jiang, O. Blacque, H.
Berke, Organometallics 2009, 29, 125-133.
15 For applications of this concept in material science, see also: a)
A. Fukazawa, H. Yamada, S. Yamaguchi, Angew. Chem. Int. Ed.
2008, 47, 5582-5585; b) A. Fukazawa, E. Yamaguchi, E. Ito, H.
3
a) L. Hintermann, in C-X Bond Formation (Ed.: A. Vigalok),
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, 123-155; b)
J. A. Goodwin, A. Aponick, Chem. Commun. 2015, 51, 8730-8741.
4 a) E. Jiménez-Nùnez, A. M. Echavarren, Chem. Rev. 2008, 108,
3326-3350; b) A. Hoffmann-Röder, N. Krause, Org. Biomol. Chem.
2005, 3, 387; b) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2005, 44,
6990; c) A. S. K. Hashmi, Gold Bull. 2004, 37, 51; E. Jiménez-
Nùnez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350.
Yamada, J. Wang, S. Irle, S. Yamaguchi, Organometallics, 2011
,
30, 3870-3879.
5 a) A. Corma, A. Leyva-Pérez, M. J. Sabater, Chem. Rev. 2011
,
16 S. G. Weber, C. Loos, F. Rominger, B. F. Straub, ARKIVOC,
2012, 2012, 226-242.
111, 1657-1712; b) H. Huang, Y. Zhou, H. Liu, Beilstein J. Org.
Chem. 2011, 7, 897-936; c) N. Krause, C. Winter, Chem. Rev.
2011, 111, 1994-2009.
17 CCDC-1509543 (
1
), CCDC-1509544 (
CCDC-1509546 (5c), CCDC-1509547 (5i), CCDC-1509548 (5l),
CCDC-1509549 ( ), CCDC-1509550 (5n), CCDC-1509551 ( ),
CCDC-1509552 (4b**), CCDC-1509553 (5a**), CCDC-1509554
5b**) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via
2), CCDC-1509545 (5a),
6
H. Kuniyasu, T. Nakajima, T. Tamaki, T. Iwasaki, N. Kambe,
6
8
Organometallics 2015, 34, 1373-1376.
7 Y. Zhang, C. Zhu, Catal. Commun. 2012, 28, 134-137.
8 a) P.S. D. Robinson, G. N. Khairallah, G. da Silva, H. Lioe, R. A.
J. O’Hair, Angew. Chem. Int. Ed. 2012, 51, 3812-3817; b) H.
Kawai, W. J. Wolf, A. G. DiPasquale, M. S. Winston, F. D. Toste,
J. Am. Chem. Soc. 2016, 138, 587-593.
(
18 Y. Xu, Z. Wang, Z. Gan, Q. Xi, Z. Duan, F. Mathey, Org. Lett.
2015, 17, 1732-1734.
9 For an overview see: I. Wauters, W. Debrouwer, C. V. Stevens,
Beilstein J. Org. Chem. 2014, 10, 1064-1096.
19 for other stable vinyl gold species derived from gold mediated
10 X. Zeng, R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem.
Int. Ed., 2010, 49, 942-945.
cyclizations see: a) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010,
49, 5232-5241; b) L.-P. Liu and G. B. Hammond, Chem. Soc. Rev.
2012, 41, 3129-3139.
11 L. Huang, M. Arndt, K. Gooßen, H. Heydt and L. J. Gooßen,
Chem. Rev. 2015, 115, 2596–2697
This article is protected by copyright. All rights reserved.