Journal of the American Chemical Society
Communication
1·Ru converted methyl acetoacetate to the corresponding
alcohol in a quantitative yield with ee’s as high as 97%. By
varying the post-synthetic metalation conditions, ee’s as high as
98% could be obtained for hydrogenation of tert-butyl aceto-
acetate, albeit in lower yields (51%, SI). 1·Ru is active in
hydrogenating a broad range of β-keto esters, but the ee’s of the
hydrogenation products are 2−5% lower than those obtained
using Ru(Me2L)(DMF)2Cl2.
REFERENCES
■
(1) (a) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.
(b) Evans, O. R.; Lin, W. Acc. Chem. Res. 2002, 35, 511. (c) Lan, A.; Li,
K.; Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M.; Li, J. Angew.
Chem., Int. Ed. 2009, 48, 2334. (d) Uemura, T.; Yanai, N.; Kitagawa, S.
Chem. Soc. Rev. 2009, 38, 1228. (e) Das, M. C.; Xiang, S.; Zhang, Z.;
Chen, B. Angew. Chem., Int. Ed. 2011, 50, 10510. (f) Wiers, B. M.; Foo,
M.-L.; Balsara, N. P.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 14522.
(g) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R.
P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105. (h) Li, J.-R.; Sculley, J.; Zhou,
H.-C. Chem. Rev. 2012, 112, 869. (i) Furukawa, H.; Cordova, K. E.;
O’Keeffe, M.; Yaghi, O. M. Science 2013, 341. (j) Shustova, N. B.;
1·Ru also catalyzed hydrogenation of substituted alkenes at
low pressures and room temperature (Table 4). First, 0.5 mol%
of 1·Ru catalyzed hydrogenation of 9a−9c to afford 10a−10c in
quantitative yields and 70−91% ee’s. As with hydrogenation of β-
keto esters, the ee’s of 10a−10c are 3−11% lower for the 1·Ru-
catalyzed reactions than for those catalyzed by Ru(Me2L)-
(DMF)2Cl2. We believe that the metalation procedure has not
yet been optimized for 1·Ru and a small amount of achiral Ru
complex might have been trapped in the MOF channel,
contributing to the racemic background reaction. Inductively
coupled plasma-optical emission spectroscopy showed the
leaching of 3.6% Ru but only 0.1% Zr from the substituted
alkene (methyl 2-acetamidoacrylate) hydrogenation reaction.
The much lower Zr concentration in the supernatant indicates
that the Ru present in solution is more likely the result of either
trapped achiral Ru complexes, such as Ru(cod)(2-methylallyl)2,
or the Ru species dissociating from the L ligand, but not from
dissolution of the MOF. This small amount of achiral Ru
complex would have been below the sensitivity of the XAFS
technique. Several tests also demonstrated the “heterogeneous”
nature and the ability to reuse 1·Ru in asymmetric hydrogenation
reactions (Scheme S3 and Figures S57−S58).
In summary, we report the first example of a BINAP-based
MOF and its post-synthetic metalation to afford highly active and
enantioselective catalysts. The 1·Rh catalyst is 3 times as active as
the homogeneous control and produces aryl addition products at
ee’s of >99%. XAFS studies demonstrated that 1·Ru has the same
Ru coordination environment as the homogeneous control. The
post-synthetically metalated BINAP-MOFs thus provide a
versatile family of single-site solid catalysts for a broad scope of
asymmetric organic transformations, and can potentially find
application in practical synthesis of fine chemicals.
Cozzolino, A. F.; Reineke, S.; Baldo, M.; Dinca,
2013, 135, 13326.
̆
M. J. Am. Chem. Soc.
(2) Kesanli, B.; Lin, W. Coord. Chem. Rev. 2003, 246, 305.
(3) (a) Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691. (b) Ma, L.;
Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248. (c) Falkowski, J. M.;
Liu, S.; Lin, W. Isr. J. Chem. 2012, 52, 591. (d) Yoon, M.; Srirambalaji, R.;
Kim, K. Chem. Rev. 2012, 112, 1196.
(4) (a) Evans, O. R.; Ngo, H. L.; Lin, W. J. Am. Chem. Soc. 2001, 123,
10395. (b) Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005,
127, 8940.
(5) Cho, S.-H.; Ma, B.; Nguyen, S. T.; Hupp, J. T.; Albrecht-Schmitt, T.
E. Chem. Commun. 2006, 2563.
(6) (a) Tanaka, K.; Oda, S.; Shiro, M. Chem. Commun. 2008, 820.
(b) Ma, L.; Falkowski, J. M.; Abney, C.; Lin, W. Nat. Chem. 2010, 2, 838.
(c) Song, F.; Want, C.; Falkowski, J. M.; Ma, L.; Lin, W. J. Am. Chem. Soc.
2010, 132, 15390. (d) Falkowski, J. M.; Wang, C.; Liu, S.; Lin, W. Angew.
Chem., Int. Ed. 2011, 50, 8674. (e) Zheng, M.; Liu, Y.; Wang, C.; Liu, S.;
Lin, W. Chem. Sci. 2012, 3, 2623. (f) Zhu, C.; Yuan, G.; Chen, X.; Yang,
Z.; Cui, Y. J. Am. Chem. Soc. 2012, 134, 8058.
(7) (a) Zhou, Q.-L., Ed. Privileged Chiral Ligands and Catalysts; Wiley-
VCH: Weinheim, 2011. (b) Hayashi, T.; Tomioka, K.; Yonemitsu, O.
Asymmetric Synthesis: Graphical Abstracts and Experimental Methods;
Gordon and Breach: Tokyo, 1998.
(8) (a) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.;
Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932. (b) Noyori, R.;
Takaya, H. Acc. Chem. Res. 1990, 23, 345.
(9) (a) Hu, A.; Ngo, H. L.; Lin, W. Angew. Chem., Int. Ed. 2003, 42,
6000. (b) Hu, A.; Ngo, H. L.; Lin, W. J. Am. Chem. Soc. 2003, 125, 11490.
(10) (a) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti,
C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
(b) Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.;
Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Chem.
Mater. 2010, 22, 6632.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data. This material is
(11) Hu, A.; Ngo, H. L.; Lin, W. Angew. Chem., Int. Ed. 2004, 43, 2501.
(12) From the commercially available starting material BINAP, the
overall yield for H2L is 9.0% in eight steps.
(13) Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem.
́
Res. 2005, 38, 217.
■
S
(14) Cohen, S. M. Chem. Rev. 2012, 112, 970.
AUTHOR INFORMATION
Corresponding Author
■
(15) Attempts to measure Rh K-edge spectra of the analogous Rh
complex and 1·Rh were unsuccessful due to absorption signal
interference from Rh-coated X-ray mirrors used at Beamline X18A at
NSLS.
(16) (a) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N.
J. Am. Chem. Soc. 1998, 120, 5579. (b) Hayashi, T.; Yamasaki, K. Chem.
Rev. 2003, 103, 2829.
Author Contributions
†J.M.F. and T.S. contributed equally.
Notes
The authors declare no competing financial interest.
(17) Siewert, J.; Sandmann, R.; von Zezschwitz, P. Angew. Chem., Int.
Ed. 2007, 46, 7122.
(18) (a) Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.;
Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856.
(b) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008.
(19) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org.
Chem. 1987, 52, 3174.
ACKNOWLEDGMENTS
■
W.L. thanks NSF (CHE-1111490) for financial support. J.M.F.
was supported by a U.S. DOE Office of Science Graduate
Fellowship (DE-AC05-06OR23100). J.V.L. acknowledges the
ACS Petroleum Research Fund for financial support (grant no.
52148-DNI5). Use of the National Synchrotron Light Source,
Brookhaven National Laboratory, was supported by the U.S.
DOE Office of Science (contract no. DE-AC02-98CH10886).
5216
dx.doi.org/10.1021/ja500090y | J. Am. Chem. Soc. 2014, 136, 5213−5216