1900
R. Li et al. / Carbohydrate Research 345 (2010) 1896–1900
the environmental issue. So, this kind of chitosan derivatives and
similar compounds are worthy of further studying. We have been
studying this series of compounds more extensively. The work will
be demonstrated in the near future.
Acknowledgments
This work was supported by the Knowledge Innovation Pro-
gram of the Chinese Academy of Sciences, Grant No. kzcx2-yw-
225, which is gratefully acknowledged.
Thanks for the financial support by the foundation of Special
Prize of President Scholarship for Postgraduate Students of Chinese
Academy of Sciences.
References and notes
Figure 6. The antifungal activities of chitosan, CACS, PACS, CHPACS, and BHPACS
against F. oxysporum.
1. Allan, C. R.; Hadwiger, L. A. Exp. Mycol. 1979, 3, 285–287.
2. Hadwiger, L. A.; Loschke, D. C. J. Phytopathol. 1981, 71, 756–762.
3. Stössel, P.; Leuba, J. L. J. Phytopathol. 1984, 111, 82–90.
4. EI Ghaouth, A.; Arul, J.; Asselin, A. J. Phytopathol. 1992, 82, 398–402.
5. Peng, Y. F.; Han, B. Q.; Liu, W. S.; Xu, X. J. Carbohydr. Res. 2005, 340, 1846–1851.
6. Liu, J. L.; Sun, H. L.; Dong, F.; Xue, Q. Z.; Wang, G.; Qin, S.; Guo, Z. Y. Carbohydr.
Polym. 2009, 78, 439–443.
7. Shahidi, F.; Arachchi, J. K. V.; Jeon, Y.-J. Trends Food Sci. Technol. 1999, 10, 37–51.
8. Rabea, E. I.; Badawy, M. E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W.
Biomacromolecules 2003, 4, 1457–1465.
9. Lim, S. H.; Hudson, S. M. Carbohydr. Res. 2004, 339, 313–319.
10. Muzzarelli, R. A. A.; Tanfani, F. Carbohydr. Polym. 1985, 5, 297–307.
11. Domard, A.; Rinaudo, M.; Terrassin, C. Int. J. Biol. Macromol. 1986, 8, 105–107.
12. Jia, Z. S.; Shen, D. F.; Xu, W. L. Carbohydr. Res. 2001, 333, 1–6.
13. Lee, M. K.; Chun, S. K.; Choi, W. J.; Kim, J. K.; Choi, S. H.; Kim, A. Biomaterials
2005, 26, 2147–2156.
14. Guo, Z. Y.; Xing, R.; Liu, S.; Zhong, Z. M.; Ji, X.; Wang, L.; Li, P. C. Carbohydr. Res.
2007, 342, 1329–1332.
15. Zhong, Z. M.; Chen, R.; Xing, R.; Chen, X. L.; Liu, S.; Guo, Z. Y.; Ji, X.; Wang, L.; Li,
P. C. Carbohydr. Res. 2007, 342, 2390–2395.
16. Badawy, M. E. I.; Rabea, E. I.; Rogge, T. M.; Stevens, C. V.; Smagghe, G.;
Steurbaut, W.; Höfte, M. Biomacromolecules 2004, 5, 589–595.
17. Liu, C. Y.; Ge, W. Y.; Qian, J.; Li, Z.; Yu, A. H. Chin. J. Chem. Reag. 2003, 25, 160–
162.
18. Karthikeyan, M. S.; Prasad, D. J.; Poojary, B.; Bhat, K. S.; Holla, B. S.; Kumari, N. S.
Bioorg. Med. Chem. 2006, 14, 7482–7489.
antifungal activities against F. oxysporum of chitosan and its
derivatives resembled that against C. lagenarium. The inhibitory
indices of CHPACS and BHPACS were, respectively, 57.0%, 58.9%
at 500
indices of chitosan and CACS were only 22.8%, 17.0% at 500
mL and 44.3%, 35.6% at 1000 g/mL, respectively.
l
g/mL and 77.2%, 72.2% at 1000
l
g/mL. The inhibitory
lg/
l
Above results indicated that the antifungal activity of CACS and
PACS against the four investigated fungi did not reveal apparent
improvement than that of chitosan. The reason was maybe, for
CACS, the graft of chloracetyl onto the chitosan led to the contents
of the active hydroxyl and amino groups in the chitosan molecular
chains decreased.32,33 Comparing the structure and the antifungal
activity of PACS, CHPACS, and BHPACS, it was obvious that CHPACS
and BHPACS showed much better antifungal activity due to the
introduction of the function groups—5-chloro-2-hydroxylbenzy-
lideneamino and 5-bromo-2-hydroxybenzylideneamino groups. It
was in accordance with the conclusions of Guo et al.34
19. Felton, L. C.; Brewer, J. H. Science 1947, 105, 409–410.
20. Liu, C. Y.; Zhao, Q. Q. Chin. J. Pharm. 2001, 32, 37.
21. Liang, F. Z. Chin. J. Appl. Chem. 2003, 20, 693–695.
22. Hu, Z.; Li, S. D.; Li, X. W.; Ou, C. Y.; Hou, T. T. J. Guangdong Ocean Univ. 2009, 29,
58–61.
4. Conclusion
In this work, three novel quaternized chitosan derivatives were
synthesized successfully, in which, CHPACS and BHPACS were two
effective antifungal derivatives of chitosan and the inhibitory indi-
ces against C. cucumerinum, M. fructicola, C. lagenarium, and F. oxy-
23. Jasso de Rodríguez, D.; Hernández-Castillo, D.; Rodríguez-García, R.; Angulo-
Sánchez, J. L. Ind. Crop. Prod. 2005, 21, 81–87.
24. Huang, R. H.; Du, Y. M.; Zheng, L. S.; Liu, H.; Fan, L. H. React. Funct. Polym. 2004,
59, 41–51.
25. Baumann, H.; Faust, V. Carbohydr. Res. 2001, 331, 43–57.
26. Panicker, C. Y.; Varghese, H. T.; Philip, D.; Nogueira, H. I. S. Spectrochim. Acta,
Part A 2006, 64, 744–747.
27. Khanmohammadi, H.; Darvishpour, M. Dyes Pigments 2009, 81, 167–173.
28. Vachoud, L.; Chen, T. H.; Payne, G. F.; Vazquez-Duhalt, R. Enzyme Microb.
Technol. 2001, 29, 380–385.
sporum ranged from 45.3% to 100% at 500
at 1000 g/mL. The inhibitory indices of the two compounds en-
hanced with increase in concentration, and the inhibitory index
100% was observed at 500 g/mL against C. cucumerinum and M.
lg/mL and 71.0% to 100%
l
l
29. Chruszcz, K.; Baran´ ska, M.; Czarniecki, K.; Boduszek, B.; Proniewicz, L. M. J. Mol.
fructicola. Moreover, the antifungal activities of CHPACS and BHP-
ACS were noticeably better than those of chitosan, CACS, and PACS
which may be due to the presence of 5-chloro-2-hydroxylbenzy-
lideneamino and 5-bromo-2-hydroxybenzylideneamino groups.
The chloro-group and bromo-group were used in many fungicides
such as pentachloronitrobenzene, chlorothalonil, and tektamer,
bromopol.35 However, these fungicides have pronounced toxicities
and their residues in the environment have already aroused seri-
ous environment problems. When these groups are grafted onto
chitosan, they could be released slowly which will largely avail
Struct. 2003, 648, 215–224.
30. Heras, A.; Rodríguez, N. M.; Ramos, V. M.; Agulló, E. Carbohydr. Polym. 2001, 44,
1–8.
31. Dal, H.; Süzen, Y.; Sßahin, E. Spectrochim. Acta, Part A 2007, 67, 808–814.
32. Simpson, B. K.; Gagne, N.; Ashie, I. N. A.; Noroozi, E. Food Biotechnol. 1997, 11,
25–44.
33. Yang, D. Z.; Liu, X. F.; Li, Z.; Xu, H. Y.; Guan, Y. L.; Yao, K. D. Chin. J. Appl. Chem.
2000, 6, 598–602.
34. Guo, Z. Y.; Chen, R.; Xing, R.; Liu, S.; Yu, H. H.; Wang, P. B.; Li, P. C. Carbohydr.
Res. 2006, 341, 351–354.
35. Nester, E. W.; Anderson, D. G.; Roberts, E.; Pearshall, N. N.; Nester, M. T.
Microbiology; McGraw-Hill: Boston, MA, 2003. pp 518–524.