Organic Letters
Letter
Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2005, 127, 7308.
(f) Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 17888.
(g) Cucciolito, M. E.; D’Amor, A.; Vitagliano, A. Organometallics 2005,
24, 3359. (h) Hahn, C.; Morvillo, P.; Herdtweck, E.; Vitagliano, A.
Organometallics 2002, 21, 1807. (i) Hahn, C.; Morvillo, P.; Vitagliano, A.
Eur. J. Inorg. Chem. 2001, 2001, 419.
(11) When only a proxicyclic H position is available, activation of the
cyclic NuPI by a strong oxidant like PhI(OAc)2 allows the formation of
acetoxylated products. This oxidation turns out to be much faster than
the C−H activation reactivity; see: (a) Chen, S.; Wu, T.; Liu, G.; Zhen, X.
Synlett 2011, 2011, 891. (b) Hovelmann, C. H.; Streuff, J.; Brelot, L.;
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Camille Huynh (UPMC) for her contribution in
preliminary experiments, Geoffrey Gontard (UPMC) for X-ray
crystallographic analyses, and Omar Khaled (UPMC) for HRMS
analyses. CNRS, UPMC, and Labex Michem are acknowledged
for financial support. Support through CMST COST Action,
CM1205 (CARISMA), is also gratefully acknowledged. M.J.C.
Muniz, K. Chem. Commun. 2008, 2334. (c) Li, Y.; Song, D.; Dong, V. M.
̃
J. Am. Chem. Soc. 2008, 130, 2962. (d) Alexanian, E. J.; Lee, C.; Sorensen,
E. J. J. Am. Chem. Soc. 2005, 127, 7690.
(12) Under these acidic conditions, a small extent of proxicyclic β-H
elimination was observed only when starting from hex-5-enoic acid N-
tosylamide.
and F.J.S.D. thank the Fundaca̧ o para Ciencia e Tecnologia for
̂
̃
(13) For an example of a blocked proxicyclic dehydropalladation
process from a cyclic AmPI, see: Balaz
́ ́
s, A.; Hetenyi, A.; Szakonyi, Z.;
financial support (UID/MULTI/00612/2013) and a fellowship
Sillanpaa, R.; Fulop, F. Chem. - Eur. J. 2009, 15, 7376.
̈
̈
̈
̈
(SFRH/BPD/76878/2011, to F.J.S.D.).
(14) This type of sequence was observed from N-tosylamines: Fix, S.
R.; Brice, J. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2002, 41, 164 From N-
tosylanthranilamides: see ref 4c. From hydrazones, see ref 4a,b.
REFERENCES
■
(1) For books on this topic, see: (a) Backvall, J.-E. In Modern Oxidation
̈
(15) For examples of Pd(II)-catalyzed oxidation of alkenes in presence
of phosphines, see: (a) Trost, B. M.; Donckele, E. J.; Thaisrivongs, D. A.;
Osipov, M.; Masters, J. T. J. Am. Chem. Soc. 2015, 137, 2776. (b) Trost, B.
M.; Thaisrivongs, D. A.; Donckele, E. J. Angew. Chem., Int. Ed. 2013, 52,
1523. (c) Li, L.; Chen, Q.-Y.; Guo, Y. Chem. Commun. 2013, 49, 8764.
(d) Trost, B. M.; Hansmann, M. M.; Thaisrivongs, D. A. Angew. Chem.,
Methods; Wiley-VCH: Weinheim, 2004. (b) Tsuji, J. In Palladium
Reagents and Catalysts, 2nd ed.; Wiley: New York, 2004. (c) Negishi, E -I.
In Handbook of Organopalladium Chemistry for Organic Synthesis; John
Wiley & Sons, Inc.: New York, 2002.
(2) For a selection of reviews on allylic C−H activation, see: (a) Liron,
F.; Oble, J.; Lorion, M. M.; Poli, G. Eur. J. Org. Chem. 2014, 20, 5863.
(b) Breder, A. Synlett 2014, 25, 899. (c) Ramirez, T. A.; Zhao, B.; Shi, Y.
Chem. Soc. Rev. 2012, 41, 931−942. (d) Engelin, C. J.; Fristrup, P.
Molecules 2011, 16, 951. (e) Jensen, T.; Fristrup, P. Chem. - Eur. J. 2009,
15, 9632.
Int. Ed. 2012, 51, 4950. (e) McMurry, J. E.; Koco
̌
vsky, P. Tetrahedron
Lett. 1984, 25, 4187.
(16) For reviews on Pd(II)-catalyzed oxidation reactions with oxygen
as oxidant, see: (a) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev.
2012, 41, 3381. (b) Gligorich, K. H.; Sigman, M. S. Chem. Commun.
2009, 3854. (c) Muzart, J. Chem. - Asian J. 2006, 1, 508. (d) Stahl, S. S.
Angew. Chem., Int. Ed. 2004, 43, 3400.
(17) For synthesis and characterizations of all starting materials, see the
(18) For Pd-catalyzed Saegusa oxidation reactions, see: (a) Ito, Y.;
Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011. (b) Larock, R. C.;
Hightower, T. R.; Kraus, G. A.; Hahn, P.; Zheng, D. Tetrahedron Lett.
1995, 36, 2423.
(19) Use of triphenylphosphine oxide as the ligand provided 2a in 10%
our conditions triphenylphosphine is not oxidized by dioxygen (1H and
31P NMR analyses).
(20) For very rare examples of anti-β-H elimination with particular
substrates and/or conditions, see: (a) Takacs, J. M.; Lawson, E. C.;
Clement, F. J. Am. Chem. Soc. 1997, 119, 5956. (b) Maeda, K.;
Farrington, E. J.; Galardon, E.; John, B. D.; Brown, J. M. Adv. Synth. Catal.
2002, 344, 104. (c) Farina, V.; Azad Hossain, M. Tetrahedron Lett. 1996,
37, 6997−7000. (d) Lautens, M.; Fang, Y.-Q. Org. Lett. 2003, 5, 3679.
(e) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. Org.
Lett. 2003, 5, 301.
(21) All calculations were carried out with Gaussian09 at the
PBE1PBE/6-311+G(2d,2p)//PBE1PBE/6-31G(d,p) level in THF.
Details are given in the SI.
(22) The deprotonation step might take place on the iminol tautomer.
Furthermore, the alternative allylic CH-activation is calculated to
(23) Jutand, A. Eur. J. Inorg. Chem. 2003, 2003, 2017.
(24) Use of 20 mol % of LiBr, or LiI, in the presence of Pd(OAc)2, PPh3,
and NaOAc led to 2a in about 40% NMR yield, which confirmed the
crucial role of the chloride anion (Table 1, entry 11).
(3) For a selection of reviews on nucleopalladation, see: (a) Koco
̌
vsky,
́
P.; Backvall, J.-E. Chem. - Eur. J. 2015, 21, 36. (b) McDonald, R. I.; Liu,
̈
G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. (c) Keith, J. A.; Henry, P. M.
Angew. Chem., Int. Ed. 2009, 48, 9038. (d) Minatti, A.; Muniz, K. Chem.
̃
Soc. Rev. 2007, 36, 1142. (e) Beccalli, E. M.; Broggini, G.; Martinelli, M.;
Sottocornola, S. Chem. Rev. 2007, 107, 5318.
(4) For recent examples on these competing mechanisms, see:
(a) Mboyi, C. D.; Abdellah, I.; Duhayon, C.; Canac, Y.; Chauvin, R.
ChemCatChem 2013, 5, 3014. (b) Mboyi, C. D.; Duhayon, C.; Canac, Y.;
Chauvin, R. Tetrahedron 2014, 70, 4957. (c) Beccalli, E. M.; Broggini, G.;
Paladino, G.; Penoni, A.; Zoni, C. J. Org. Chem. 2004, 69, 5627.
(d) Zanoni, G.; Porta, A.; Meriggi, A.; Franzini, M.; Vidari, G. J. Org.
Chem. 2002, 67, 6064.
(5) For a recent reviews on palladium(II)-catalyzed oxidation of
alkenes on nucleopalladation and allylic C−H activation, see: Mann, S.
E.; Benhamou, L.; Sheppard, T. D. Synthesis 2015, 47, 3079.
(6) (a) Nahra, F.; Liron, F.; Prestat, G.; Mealli, C.; Messaoudi, A.; Poli,
G. Chem. - Eur. J. 2009, 15, 11078. (b) Rajabi, J.; Lorion, M. M.; Ly, V. L.;
Liron, F.; Oble, J.; Prestat, G.; Poli, G. Chem. - Eur. J. 2014, 20, 1539.
(c) Lorion, M. M.; Nahra, F.; Ly, V. L.; Mealli, C.; Mesaoudi, A.; Liron,
F.; Oble, J.; Poli, G. Chem. Today 2014, 32, 30. (d) Duarte, F. J. S.; Poli,
G.; Calhorda, M. J. ACS Catal. 2016, 1772.
(7) Louafi, F.; Lorion, M. M.; Oble, J.; Poli, G. Synlett 2015, 26, 2237.
See also: Zanoni, G.; Porta, A.; Meriggi, A.; Franzini, M.; Vidari, G. J. Org.
Chem. 2002, 67, 6064.
(8) We propose the acronym NuPI for a generic nucleopalladated
intermediate and AmPI and OxPI for the specific aminopalladated or
oxypalladated intermediates, respectively.
(9) We propose the terms distocyclic and proxicyclic to distinguish
between β-H eliminations involving a hydrogen atom on a linear
fragment or on a cyclic structure, respectively.
(10) For recent reports about the reversible aminopalladation, see:
(a) Zhu, H.; Chen, P.; Liu, G. Org. Lett. 2015, 17, 1485. (b) Wu, T.;
Cheng, J.;Chen, P.; Liu, G. Chem. Commun. 2013, 49, 8707. (c) White, P.
B.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 18594. (d) Cochran, B. M.;
Michael, F. E. J. Am. Chem. Soc. 2008, 130, 2786. (e) Bar, G. L. J.; Lloyd-
(25) Fagnou, K.; Lautens, M. Angew. Chem., Int. Ed. 2002, 41, 26.
NOTE ADDED AFTER ASAP PUBLICATION
Paragraph discussing Scheme 5 was corrected February 23, 2016.
■
D
Org. Lett. XXXX, XXX, XXX−XXX