Page 5 of 7
ACS Catalysis
Dependent Inversion of Diastereo- and Enantioselectivity in
Hydrofunctionalization of 1,3-Dienes. ACS. Catal. 2020, 10, 1060-
1076.
(8) (a) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G.
Carbonyl Crotylation via Ruthenium-Catalyzed Butadiene
Hydrohydroxyalkylation. J. Am. Chem. Soc. 2012, 134, 20628-
20631. (e) McCammant, M. S.; Liao, L.; Sigman, M. S. Palladium-
Catalyzed 1,4-Difunctionalization of Butadiene to Form Skipped
Polyenes. J. Am. Chem. Soc. 2013, 135, 4167-4170. (f) Grayson, M.
N.; Krische, M. J.; Houk, K. N. Ruthenium-Catalyzed Asymmetric
Hydrohydroxyalkylation of Butadiene: The Role of the Formyl
Hydrogen Bond in Stereochemical Control. J. Am. Chem. Soc. 2015,
137, 8838-8850. (g) Li, X.; Meng, F.; Torker, S.; Shi, Y.; Hoveyda, A.
H. Catalytic Enantioselective Conjugate Additions of (pin)B-
Substituted Allylcopper Compounds Generated in situ from
Butadiene or Isoprene. Angew. Chem. Int. Ed. 2016, 55, 9997-10002.
(h) Jiang, L.; Cao, P.; Wang, M.; Chen, B.; Wang, B.; Liao, J. Highly
Diastereo- and Enantioselective Cu-Catalyzed Borylative Coupling
of 1,3-Dienes and Aldimines. Angew. Chem. Int. Ed. 2016, 55,
13854-13858. (i) Sleet, C. E.; Tambar, U. K. Copper-Catalyzed
Aminothiolation of 1,3-Dienes via a Dihydrothiazine Intermediate.
Angew. Chem. Int. Ed. 2017, 56, 5536-5540. (j) Tortajada, A.;
Ninokata, R.; Martin, R. Ni-Catalyzed Site-Selective Dicarboxylation
of 1,3-Dienes with CO2. J. Am. Chem. Soc. 2018, 140, 2050-2053. (k)
Xiong, Y.; Zhang, G. Enantioselective 1,2-Difunctionalization of 1,3-
Butadiene by Sequential Alkylation and Carbonyl Allylation. J. Am.
Chem. Soc. 2018, 140, 2735-2738. (l) Li, C.; Liu, R. Y.; Jesikiewicz, L.
T.; Yang, Y.; Liu, P.; Buchwald, S. L. CuH-Catalyzed Enantioselective
Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and
Applications. J. Am. Chem. Soc. 2019, 141, 5062-5070. (m) Yang, J.;
Liu, J.; Neumann, H.; Franke, R.; Jackstell, R.; Beller, M. Direct
Synthesis of Adipic Acid Esters via Palladium-catalyzed
Carbonylation of 1,3-Dienes. Science 2019, 366, 1514-1517.
(5) (a) Kuniyuki, T.; Akihisa, M.; Go, H. Palladium-catalyzed
Reactions of 1,3-Dienes with Active Methylene Compounds. IV.
Palladium-diphosphine Complex Catalysts. Bull. Chem. Soc. Jpn.
1972, 45, 1183-1191. (b) Baker, R.; Popplestone, R. J. Reactions of
Active Methylene and Carbonyl Compounds with Myrcene
Catalysed by Palladium and Nickel Complexes. Tetrahedron Lett.
1978, 19, 3575-3578. (c) Andell, O. S.; Bäckvall, J.-E.; Moberg, C.
Nickel- and Palladium-catalyzed Additions of Nucleophiles to
Cyclic 1,3-Dienes. Acta Chem. Scand. 1986, 40b, 184-189. (d) Wilke,
G. Contributions to Organo-Nickel Chemistry. Angew. Chem. Int. Ed.
1988, 27, 185-206. (e) Jolly, P. W.; Kokel, N. Reaction of 1,3-Dienes
with Nucleophiles Catalysed by [1,2-Bis(dialkylphosphino)-ethane]
palladium Complexes. Synthesis 1990, 1990, 771-773. (f) Adamson,
N. J.; Wilbur, K. C. E.; Malcolmson, S. J. Enantioselective
Intermolecular Pd-catalyzed Hydroalkylation of Acyclic 1,3-Dienes
with Activated Pronucleophiles. J. Am. Chem. Soc. 2018, 140,
2761−2764. (g) Yang, X.-H.; Davison, R. T.; Nie, S.-Z.; Cruz, F. A.;
McGinnis, T. M.; Dong, V. M. Catalytic Hydrothiolation: Counterion-
Controlled Regioselectivity. J. Am. Chem. Soc. 2019, 141, 3006-3013.
(h) Zhang, Q.; Yu, H.; Shen, L.; Tang, T.; Dong, D.; Chai, W.; Zi, W.,
Stereodivergent Coupling of 1,3-Dienes with Aldimine Esters
Enabled by Synergistic Pd and Cu Catalysis. J. Am. Chem. Soc. 2019,
141, 14554-14559.
1
2
3
4
5
6
7
8
Transition Metal-catalyzed Ketone-directed or Mediated C-H
Functionalization. Chem. Soc. Rev. 2015, 44, 7764–7786. (b) Mo, F.;
Dong, G. Regioselective Ketone α-Alkylation with Simple Olefins via
Dual Activation. Science 2014, 345, 68–72. (c) Mo, F.; Lim, H. N.;
Dong, G. Bifunctional Ligand-Assisted Catalytic Ketone α-
Alkenylation with Internal Alkynes: Controlled Synthesis of Enones
and Mechanistic Studies. J. Am. Chem. Soc. 2015, 137, 15518–15527.
(d) Lim, H. N.; Dong, G. Catalytic Intramolecular Ketone Alkylation
with Olefins by Dual Activation. Angew. Chem. Int. Ed. 2015, 54,
15294-15298. (e) Xing, D.; Dong, G. Branched-Selective
Intermolecular Ketone α-Alkylation with Unactivated Alkenes via
an Enamide Directing Strategy. J. Am. Chem. Soc. 2017, 139, 13664–
13667. (f) Xing, D.; Qi, X.; Marchant, D.; Liu, P.; Dong, G. Branched-
Selective Direct α-Alkylation of Cyclic Ketones with Simple Alkenes.
Angew. Chem. Int. Ed. 2019, 58, 4366-4370. For related DFT
calculations, see: (g) Dang, Y.; Qu, S.; Tao, Y.; Deng, X.; Wang, Z.-X.
Mechanistic Insight into Ketone α-Alkylation with Unactivated
Olefins via C–H Activation Promoted by Metal–Organic
Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry. J.
Am. Chem. Soc. 2015, 137, 6279–6291. (h) Li, X.; Wu, H.; Lang, Y.;
Huang, G. Mechanism, Selectivity, and Reactivity of Iridium- and
Rhodium-catalyzed Intermolecular Ketone α-Alkylation with
Unactivated Olefins via an Enamide Directing Strategy. Catal. Sci.
Technol. 2018, 8, 2417–2426. (i) Yang, H.; Xing, D. Palladium-
catalyzed Diastereo- and Enantioselective Allylic Alkylation of
Oxazolones with 1,3-Dienes under Base-free Conditions. Chem.
Commun. 2020, doi: 10.1039/D0CC00265H.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) For
a preprinted related but unpublished work on
September 11, 2018: DOI: 10.26434/chemrxiv.7072646.
(10) For selected reviews on Ni-catalyzed C-H functionalization,
see: (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent Advances
in Homogeneous Nickel Catalysis. Nature 2014, 509, 299-309. (b)
Castro, L. C. M.; Chatani, N. Nickel Catalysts/N,N′-Bidentate
Directing Groups: An Excellent Partnership in Directed C–H
Activation Reactions. Chem. Lett. 2015, 44, 410-421. (c) Zhan, B.;
Liu, B.; Hu, F.; Shi, B. Recent Progress on Nickel-catalyzed Direct
Functionalization of Unactivated C-H bonds. Chin. Sci. Bull. 2015,
60, 2907-2917. (d) Yamaguchi, J.; Muto, K.; Itami, K. Nickel-
Catalyzed Aromatic C–H Functionalization. Top. Curr. Chem. 2016,
374, 55.
(11) (a) Graening, T.; Hartwig, J. F. Iridium-Catalyzed Regio- and
Enantioselective Allylation of Ketone Enolates. J. Am. Chem. Soc.
2005, 127, 17192-17193. (b) Chen, M.; Hartwig, J. F. Iridium-
Catalyzed Enantioselective Allylic Substitution of Unstabilized
Enolates Derived from α,β-Unsaturated Ketones. Angew. Chem. Int.
Ed. 2014, 53, 8691-8695. (c) Liang, X.; Wei, K.; Yang, Y.-R. Iridium-
catalyzed Enantioselective Allylation of Silyl Enol Ethers Derived
from Ketones and α,β-Unsaturated Ketones. Chem. Commun. 2015,
51, 17471-17474.
(12) Substituted 1,3-dienes such as phenyl- or alkyl-substituted
1,3-dienes, 1,3-cyclohexadiene, as well as isoprene which is also a
feedstock reagent, also underwent this transformation with high
efficiency. For detailed results, see the Supporting Information.
(13) The reaction without H2O was run under strictly anhydrous
conditions and all substrates were pre-dried with 4 Å molecular
sieves. For details, see the Supporting Information.
(14) A large KIE (4.5) was observed for the reaction between
acetophenone 1a and 1-phenyl-1,3-butadiene, for details, see the
Supporting Information.
(6) (a) Smutny, E. J. Oligomerization and Dimerization of
Butadiene under Homogeneous Catalysis. Reaction with
Nucleophiles and the Synthesis of 1,3,7-Octatriene. J. Am. Chem. Soc.
1967, 89, 6793-6794. (b) Takahashi, S.; Shibano, T.; Hagihara, N.
The Dimerization of Butadiene by Palladium Complex Catalysts.
Tetrahedron Lett. 1967, 8, 2451-2453. (c) Behr, A.; Becker, M.;
Beckmann, T.; Johnen, L.; Leschinski, J.; Reyer, S. Telomerization:
Advances and Applications of a Versatile Reaction. Angew. Chem.
Int. Ed. 2009, 48, 3598-3614.
(7) (a) Cheng, L.; Li, M.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. Nickel(0)-
Catalyzed Hydroalkylation of 1,3-Dienes with Simple Ketones. J.
Am. Chem. Soc. 2018, 140, 11627-11630. For a recent review on the
hydrofunctionalization of 1,3-dienes with nucleophiles, see: (b)
Adamson, N. J.; Malcolmson, S. J. Catalytic Enantio- and
Regioselective Addition of Nucleophiles in the Intermolecular
(15) (a) Mifleur, A.; Mérel, D. S.; Mortreux, A.; Suisse, I.; Capet, F.;
Trivelli, X.; Sauthier, M.; Macgregor, S. A. Deciphering the
Mechanism of the Nickel-Catalyzed Hydroalkoxylation Reaction: A
Combined Experimental and Computational Study. ACS Catal.
2017, 7, 6915-6923. (b) for a similar pathway with palladium, see:
Jolly, P. W. η3-Allylpalladium Compounds. Angew. Chem. Int. Ed.
1985, 24, 283-295.
ACS Paragon Plus Environment