PIDA-Mediated Synthesis of Aromatic Azo Compounds
(grant number SR/S5/GC-05/2010). K. M. thanks the Council of
Scientific Research (CSIR), New Delhi, and M. G. and S. M. thank
the University Grants Commission (UGC), New Delhi for their
fellowships. The authors are also thankful to the Department of
Science and Technology – Fund for Improvement of Science and
Technology and University Grants Commission – Special Assist-
ance Programme (DST-FIST and UGC-SAP) for their support in
improving the infrastructural facility. The authors thank the re-
viewers for their constructive suggestions.
Experimental Section
Typical Procedure for the Synthesis of (E)-1,2-Di-p-tolyl-diazene
(2cc): In a round-bottomed flask fitted with a cap, p-toluidine (1b,
107 mg, 1.0 mmol) was dissolved in ethanol (2 mL) and cooled in
an ice-salt mixture at –20 °C under an open atmosphere. PIDA
(1 mmol) was added portionwise during 5 min and the reaction
mixture was then allowed to reach room temperature and then
heated to 60 °C for 25 min. The progress of the reaction was moni-
tored by TLC. Upon completion of the reaction, ethanol was evap-
orated and the residue was purified by column chromatography
over silica gel (petroleum ether) to furnish the corresponding aro-
matic azo compound (75 mg, 71%)[12] as a yellow solid; m.p. 137–
140 °C. 1H NMR (400 MHz, CDCl3): δ = 7.73 (d, J = 8.0 Hz, 2
H), 7.22 (d, J = 8.4 Hz, 2 H), 2.35 (s, 3 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 150.8, 141.1, 129.6, 122.7, 21.4 ppm.
[1]
a) H. Zollinger, Color Chemistry: Synthesis Properties and Ap-
plications of Organic Dyes and Pigments, VCH Publishers, NY,
1987, p. 85; b) K. Hunger, Industrial Dyes: Chemistry, Proper-
ties, Applications, Wiley-VCH, Weinheim, Germany, 2003; c)
P. F. Gordon, P. Gregory, Organic Chemistry in Colour,
Springer, NY, 1983, p. 95.
(E)-1-(4-Chlorophenyl)-2-(4-methoxyphenyl)diazene (4dh): A mix-
ture of p-toluidine 1b (107 mg, 1.0 mmol) and p-chloroaniline 1h
(152.4 mg, 1.2 mmol), in a round-bottomed flask fitted with a cap,
was dissolved in ethanol (4 mL) and cooled in a ice-salt mixture at
–20 °C under an open atmosphere. PIDA (2.2 mmol) was added
slowly during 5 min, then the reaction mixture was allowed to reach
room temperature and heated at 60 °C for another 25 min. The
progress of the reaction was monitored by TLC. Upon completion
of the reaction, ethanol was evaporated and the residue was puri-
fied by column chromatography on silica gel (ethyl acetate/petro-
leum ether, 1:9) to furnish the corresponding azo compound
(133 mg, 53%). 1H NMR (400 MHz, CDCl3): δ = 7.93 (d, J =
8.8 Hz, 2 H), 7.85 (d, J = 8.8 Hz, 2 H), 7.48 (d, J = 8.8 Hz, 2 H),
7.03 (d, J = 9.2 Hz, 2 H), 3.91 (s, 3 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 162.2, 151.0, 146.7, 136.1, 129.2, 124.8, 123.7, 114.2,
55.5 ppm. C13H11ClN2O (246.70): calcd. C 63.29, H 4.49, N 11.36;
found C 63.10, H 4.35, N 11.15.
[2]
[3]
a) J. R. S. Hoult, Drugs 1986, 32, 18; b) W. J. Sandborn, S. B.
Hanauer, Aliment. Pharmacol. Ther. 2003, 17, 29.
For reviews on synthetic approaches to azobenzenes, see: a) E.
Merino, Chem. Soc. Rev. 2011, 40, 3835; b) F. Hamon, F. D.-
Pilard, F. Barbot, C. Len, Tetrahedron 2009, 65, 10105.
a) T. F. Chung, Y. M. Wu, C. H. Cheng, J. Org. Chem. 1984,
49, 1215; b) K. Ohe, S. Uemura, N. Sugita, H. Masuda, T.
Taga, J. Org. Chem. 1989, 54, 4169; c) S. Wada, M. Urano, H.
Suzuki, J. Org. Chem. 2002, 67, 8254; d) G. R. Srinivasa, K.
Abiraj, D. C. Gowda, Tetrahedron Lett. 2003, 44, 5835; e) N.
Sakai, K. Fujii, S. Nabeshima, R. Ikeda, T. Konakahara,
Chem. Commun. 2010, 46, 3173; f) H. Zhu, X. Ke, X. Yang, S.
Sarina, H. Liu, Angew. Chem. 2010, 122, 9851; Angew. Chem.
Int. Ed. 2010, 49, 9657; g) L. Hu, X. Cao, L. Shi, F. Qi, Z.
Guo, J. Lu, H. Gu, Org. Lett. 2011, 13, 5640.
a) H. E. Baumgarten, A. Staklis, E. M. Miller, J. Org. Chem.
1965, 30, 1203; b) K. Wenkert, B. Wickberg, J. Am. Chem. Soc.
1962, 84, 4914; c) E. Werkurt, E. C. Angell, Synth. Commun.
1988, 18, 1331; d) W. Lu, C. Xi, Tetrahedron Lett. 2008, 49,
4011.
a) H. E. Baumgarten, A. Staklis, E. M. Miller, J. Org. Chem.
1965, 30, 1203; b) H. Firouzabadi, Z. Mostafavippor, Bull.
Chem. Soc. Jpn. 1983, 56, 914; c) J. M. Birchall, R. N. Haszeld-
ine, J. E. G. Kemp, J. Chem. Soc. C 1970, 449; d) K. Wenkert,
B. Wickberg, J. Am. Chem. Soc. 1962, 84, 4914; e) S. Farhadi,
P. Zaringhadam, R. Z. Sahamieh, Acta Chim. Slov. 2007, 54,
647; f) S. L. Goldstein, E. McNelis, J. Org. Chem. 1973, 38,
183; g) H. Huang, D. Sommerfeld, B. C. Dunn, C. R. Lloyd,
E. M. Eyring, J. Chem. Soc., Dalton Trans. 2001, 1301.
a) J. Wang, L. Hu, X. Cao, J. Lu, X. Li, H. Gu, RSC Adv.
2013, 3, 4899; b) L. Hu, X. Cao, L. Chen, J. Zheng, J. Lu, X.
Sun, H. Gu, Chem. Commun. 2012, 48, 3445.
For selected examples, see: a) M. H. Davey, V. Y. Lee, R. D.
Miller, T. J. Marks, J. Org. Chem. 1999, 64, 4976; b) W. H. Nut-
ting, R. A. Jewell, H. Rapoport, J. Org. Chem. 1970, 35, 505.
a) R. A. Cox, I. Onyido, E. Buncel, J. Am. Chem. Soc. 1992,
114, 1358; b) K.-S. Cheon, R. A. Cox, S.-R. Keum, E. Buncel,
J. Chem. Soc. Perkin Trans. 2 1998, 19, 1231; c) E. Buncel, K.-
S. Cheon, J. Chem. Soc. Perkin Trans. 2 1998, 19, 1241; d) G. R.
Hodges, J. R. L. Smith, J. Oakes, J. Chem. Soc. Perkin Trans. 2
1999, 20, 1943.
a) K. Haghbeen, E. W. Tan, J. Org. Chem. 1998, 63, 4503; b)
M. Tomasulo, F. M. Raymo, Org. Lett. 2005, 7, 4633; c) P.
Gopalan, H. E. Katz, D. J. McGee, C. Erben, T. Zielinski, D.
Bousquet, D. Muller, J. Grazul, Y. Olsson, J. Am. Chem. Soc.
2004, 126, 1741.
[4]
[5]
[6]
Isolation of Intermediate B [N-(4-Ethoxy-4-methylcyclohexa-2,5-di-
enylidene)-NЈ-p-tolylhydrazine] (B): p-Toluidine (1c, 107 mg,
1.0 mmol) was taken in a sealed tube, dissolved in ethanol (2 mL)
and kept in an ice-salt mixture at –20 °C under an open atmo-
sphere. PIDA (1.0 mmol) was added slowly during 5 min, then the
reaction mixture was allowed to reach room temperature and kept
for 1 h. The progress of the reaction was monitored by TLC. Upon
completion of the reaction, ethanol was evaporated by rotary evap-
orator. The residue was purified by column chromatography over
silica gel (petroleum ether/ethyl acetate, 10:1) to furnish the corre-
sponding intermediate B (68 mg, 53%). 1H NMR (400 MHz,
CDCl3): δ = 7.13 (d, J = 7.6 Hz, 2 H), 6.73 (d, J = 8.0 Hz, 2 H),
6.54 (dd, J = 2.0, 10 Hz, 1 H), 6.42 (dd, J = 2.0, 10.4 Hz, 1 H),
6.36 (dd, J = 2.4, 10 Hz, 1 H), 6.25 (dd, J = 2.4, 10 Hz, 1 H), 3.39–
3.27 (m, 2 H), 2.34 (s, 3 H), 1.40 (s, 3 H), 1.16 (t, J = 7.2 Hz, 3
H) ppm. 13C NMR (100 MHz, CDCl3): δ = 156.4, 147.3, 145.0,
143.0, 133.6, 131.0, 129.3, 120.9, 120.4, 72.5, 60.4, 27.4, 20.8,
15.9 ppm. C16H20N2O (256.35): calcd. C 74.97, H 7.86, N 10.93;
found C 74.86, H 7.98, N 10.9.
[7]
[8]
[9]
All products were characterized on the basis of their spectral (1H
and 13C NMR) and analytical data.
[10]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, product characterization, and copies of
1H and 13C NMR spectra of all synthesized compounds.
[11]
[12]
A. Grirrane, A. Corma, H. Garcia, Science 2008, 322, 1661.
C. Zhang, N. Jiao, Angew. Chem. 2010, 122, 6310; Angew.
Chem. Int. Ed. 2010, 49, 6174.
Acknowledgments
A. H. and A. M. acknowledge financial support from the Depart-
ment of Science and Technology (DST), Government of India
[13]
S. Cai, H. Rong, X. Yu, X. Liu, D. Wang, W. He, Y. Li, ACS
Catal. 2013, 3, 478.
Eur. J. Org. Chem. 2014, 1096–1102
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1101