Edge Article
Chemical Science
temperature to avoid the use of phase-transfer reagents, thus
moving toward even greener processes.
M. North and M. Omedes-Pujol, Tetrahedron Lett., 2009, 50,
4452–4454; (e) J. Sun, L. Liang, J. Sun, Y. Jiang, K. Lin,
X. Xu and R. Wang, Catal. Surv. Asia, 2011, 15, 49–54.
8 There are only sporadic reports of direct synthesizing cyclic
carbonates from aliphatic olens and CO2, associated with
problems such as low yield, low conversion, requiring
excess reagents and high pressure of CO2: (a) N. Eghbali
and C.-J. Li, Green Chem., 2007, 9, 213–215; (b) D. Bai and
H. Jing, Green Chem., 2010, 12, 39–41; (c) F. Chen, T. Dong,
T. Xu, X. Li and C. Hu, Green Chem., 2011, 13, 2518–
2524.
Acknowledgements
We gratefully acknowledge nancial support from the DOE (DE-
FOA-0000253) and the Siemens Corporation. We thank Li Li
(MIT) for obtaining mass spectrometric data.
Notes and references
1 Recent reviews on continuous ow chemistry: (a)
9 Conversion of olens to cyclic carbonates using a catalytic
amount of bromide ion together with excess aqueous H2O2
failed in the ow system due to decomposition of H2O2
towards stainless steel: S. S. Lin and M. D. Gurol, Environ.
Sci. Technol., 1998, 32, 1417–1423.
¨
¨
K. Jahnisch, V. Hessel, H. Lowe and M. Baerns, Angew.
Chem., Int. Ed., 2004, 43, 406–446; (b) B. P. Mason,
K. E. Price, J. L. Steinbacher, A. R. Bogdan and
D. T. McQuade, Chem. Rev., 2007, 107, 2300–2318; (c)
S. V. Ley and I. R. Baxendale, Proc. Bozen Symp., Systems 10 It has been reported that DBU activated CO2 in H2O to form a
Chem., 2008, 65–85; (d) R. L. Hartman and K. F. Jensen,
Lab Chip, 2009, 9, 2495–2507; (e) D. Webb and
T. F. Jamison, Chem. Sci., 2010, 1, 675–680; (f)
R. L. Hartman, J. P. McMullen and K. F. Jensen, Angew.
Chem., Int. Ed., 2011, 50, 7502–7519; (g) N. G. Anderson,
Org. Process Res. Dev., 2012, 16, 852–869; (h) J. Yoshida,
bicarbonate salt of DBU instead of a zwitterionic adduct,
which exhibited good reactivity for various CO2-xation
reactions: (a) D. J. Heldebrant, P. G. Jessop, C. A. Thomas,
C. A. Eckert and C. L. Liotta, J. Org. Chem., 2005, 70, 5335–
5338; (b) M. Yoshida, Y. Komatsuzaki and M. Ihara, Org.
Lett., 2008, 10, 2083–2086.
Y. Takahashi and A. Nagaki, Chem. Commun., 2013, 49, 11 The structure of complex D was not fully determined at this
9896–9904.
2 For select recent examples, see: (a) B. K. H. Yen, A. Gunther,
stage. For control experiments exploring the interaction
between NBS and DBU, see ESI.†
¨
M. A. Schmidt, K. F. Jensen and M. G. Bawendi, Angew. 12 For further control experiments to elucidate the mechanism,
Chem., Int. Ed., 2005, 44, 5447–5451; (b) M. T. Rahman,
see ESI.†
T. Fukuyama, N. Kamata, M. Sato and I. Ryu, Chem. 13 Cyclic carbonates are known to be hydrolyzed under basic
Commun., 2006, 2236–2238; (c) E. R. Murphy,
J. R. Martinelli, N. Zaborenko, S. L. Buchwald and
K. F. Jensen, Angew. Chem., Int. Ed., 2007, 46, 1734–1737;
condition to give diols: D. J. Cross, J. A. Kenny, I. Houson,
L. Campbell, T. Walsgrove and M. Wills, Tetrahedron:
Asymmetry, 2001, 12, 1801–1806.
(d) A. Polyzos, M. O'Brien, T. P. Petersen, I. R. Baxendale 14 For condition optimization, see ESI.†
and S. V. Ley, Angew. Chem., Int. Ed., 2011, 50, 1190–1193.
3 For recent excellent examples that address the reagent
15 See ESI for studies on comparing the two-stream ow with
conventional batch conditions.†
incompatibility problem by ash chemistry in ow 16 C. Caristi, G. Cimino, A. Ferlazzo, M. Gattuso and M. Parisi,
microreactors, see: (a) A. Nagaki, H. Kim and J. Yoshida, Tetrahedron Lett., 1983, 24, 2685–2688.
Angew. Chem., Int. Ed., 2008, 47, 7833; (b) A. Nagaki, 17 Several reports have demonstrated the feasibility of
H. Kim and J. Yoshida, Angew. Chem., Int. Ed., 2009, 48,
8063–8065; (c) H. Kim, A. Nagaki and J. Yoshida, Nat.
Commun., 2011, 2, 264; (d) A. Nagaki, C. Matsuo, S. Kim,
K. Saito, A. Miyazaki and J. Yoshida, Angew. Chem., Int. Ed.,
2012, 51, 3245–3248.
4 Selected recent reviews, see: (a) T. Sakakura, J. Choi and
H. Yasuda, Chem. Rev., 2007, 107, 2365–2387; (b) I. Omae,
Coord. Chem. Rev., 2012, 256, 1384–1405.
converting bromohydrins to carbonates with CO2 using
ammonium salts, ionic liquids, or poly(ethyleneglycol): (a)
C. Venturello and R. D'Aloisio, Synthesis, 1985, 33; (b)
J. S. Yadav, B. V. S. Reddy, G. Baishya, S. J. Harshavardhan,
J. Chary and M. K. Gupta, Tetrahedron Lett., 2005, 46,
3569–3572; (c) J. Wang, L. He, X. Dou and F. Wu, Aust.
J. Chem., 2009, 62, 917–920.
18 Other solvent–water mixtures evaluated included THF, DMF,
dioxane, and MeCN with water.
5 Selected reviews: (a) J. H. Clements, Ind. Eng. Chem. Res.,
2003, 42, 663–674; (b) D. J. Darensbourg, Chem. Rev., 2007, 19 B. Das, K. Venkateswarlu, K. Damodar and K. Suneel, J. Mol.
107, 2388–2410. Catal. A: Chem., 2007, 17–21.
6 J. A. Kozak, J. Wu, X. Su, F. Simeon, T. A. Hatton and 20 Unlike in DMF, olens and NBS did not react with each other
T. F. Jamison, J. Am. Chem. Soc., 2013, 135, 18497–
18501.
7 For selected examples, see: (a) J. Sun, S. Fujita, F. Zhao,
M. Hasegawa and M. Arai, J. Catal., 2005, 398–405; (b)
in acetone.
´
21 C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adan,
E. Martin and A. W. Kleij, J. Am. Chem. Soc., 2013, 135, 1228–
1231.
F. Ono, K. Qiao, D. Tomida and C. Yokoyama, Appl. Catal., 22 For control experiments exploring the conversion of
A, 2007, 107–113; (c) J.-L. Wang, J.-Q. Wang, L.-N. He,
X.-Y. Dou and F. Wu, Green Chem., 2008, 10, 1218–1223; (d)
epoxides to cyclic carbonates under ow conditions and
related discussion, see ESI.†
This journal is © The Royal Society of Chemistry 2014
Chem. Sci., 2014, 5, 1227–1231 | 1231