2254 Organometallics, Vol. 28, No. 7, 2009
Gauthier et al.
Chart 1. Selected Mononuclear Acetylide d6 Complexes
Scheme 1. Synthesis of 1-NMe2 ([Ru] ) trans-(dppe)2Ru)
These studies have also evidenced that this hole is somewhat
more delocalized in 2-X+ than in 3-X+.7 With these results in
mind, it is of particular interest to investigate more closely how
the “trans-Cl(η2-dppe)2RuCtC-” fragment, in a given redox
state, influences the electronic properties of selected functional
complexes such as 1-X and 1-X+ and to carefully compare these
data with those of the corresponding 2-X and 2-X+ relatives,
in order to gain a deeper understanding of the similarities and
differences between these isolobal and isoelectronic organo-
metallic end groups.
We therefore report in the following (i) the synthesis and
characterization of a new 1-X complex featuring the strongly
electron-releasing dimethylamino substituent (1-NMe2), (ii) an
investigation of the electronic substituent effects in a series of
Ru(II) complexes composed of this new compound comple-
mented by previously reported analogues functionalized with
less electron-releasing substituents (X ) NO2, C(O)H, C(O)Me,
F, H, and OMe), (iii) the characterization of these compounds
in their mono-oxidized Ru(III) state along with a study of
electronic substituent effects in this state, (iv) an extensive
theoretical study using density functional theory (DFT) calcula-
tions of selected Ru(II) and Ru(III) model compounds, and (v)
a comparative discussion of the bonding within the “Ru-CtC-
1,4-C6H4-” core between 1-X/1-X+ and 2-X/2-X+, with
particular emphasis placed on spin delocalization in the Ru(III)
radicals in relation to their ESR signatures.
investigations on these compounds,13,14,18 the metal-centered
pseudoreversible Ru(II)/Ru(III) oxidation was detected close to
the ferrocene redox potential (the use of 3-NO2 as internal
calibrant allowed accurate evaluation of the E° values for these
(3) (a) Powell, C. E.; Humphrey, M. G. Coord. Chem. ReV. 2004, 248,
725–756. (b) Whittall, I. R.; Mac Donagh, A. M.; Humphrey, M. G.; Samoc,
M. AdV. Organomet. Chem. 1998, 42, 291–362. (c) Whittall, I. R.; Mac
Donagh, A. M.; Humphrey, M. G.; Samoc, M. AdV. Organomet. Chem.
1999, 43, 349–405. (d) Cifuentes, M. P.; Humphrey, M. G.; Morrall, J. P.;
Samoc, M.; Paul, F.; Roisnel, T.; Lapinte, C. Organometallics 2005, 24,
4280–4288. (e) Paul, F.; Costuas, K.; Ledoux, I.; Deveau, S.; Zyss, J.; Halet,
J.-F.; Lapinte, C. Organometallics 2002, 21, 5229–5235. (f) Weyland, T.;
Ledoux, I.; Brasselet, S.; Zyss, J.; Lapinte, C. Organometallics 2000, 19,
5235–5237. (g) Powell, C. E.; Humphrey, M. G.; Cifuentes, M. P.; Morrall,
J. P.; Samoc, M.; Luther-Davies, B. J. Phys. Chem. A 2003, 107, 11264–
11266. (h) Cifuentes, M. P.; Powell, C. E.; Humphrey, M. G.; Heath, G. A.;
Samoc, M.; Luther-Davies, B. J. Phys. Chem. A 2001, 105, 9625–9627.
(4) Powell, C. E.; Cifuentes, M. P.; Morrall, J. P.; Stranger, R.;
Humphrey, M. G.; Samoc, M.; Luther-Davies, B.; Heath, G. A. J. Am. Chem.
Soc. 2003, 125, 602–610.
(5) See also for the tetra-amino analogues: Wong, W.-Y.; Che, C.-M.;
Chan, M. C. W.; Han, J.; Leung, K.-H.; Phillips, D. L.; Wong, K.-Y.; Zhu,
N. J. Am. Chem. Soc. 2005, 127, 13997–14007.
(6) Costuas, K.; Paul, F.; Toupet, L.; Halet, J.-F.; Lapinte, C. Organo-
metallics 2004, 23, 2053–2068.
(7) Paul, F.; Ellis, B. J.; Bruce, M. I.; Toupet, L.; Roisnel, T.; Costuas,
K.; Halet, J.-F.; Lapinte, C. Organometallics 2006, 25, 649–665.
(8) Mc Grady, J. E.; Lovell, T.; Stranger, R.; Humphrey, M. G.
Organometallics 1997, 16, 4004–4011.
(9) Gauthier, N.; Olivier, C.; Rigaut, S.; Touchard, D.; Roisnel, T.;
Humphrey, M. G.; Paul, F. Organometallics 2008, 26, 1063–1072.
(10) Fox, M. A.; Roberts, R. L.; Khairul, W. M.; Hartl, F.; Low, P. J.
J. Organomet. Chem. 2007, 692, 3277–3290.
(11) Paul, F.; da Costa, G.; Bondon, A.; Gauthier, N.; Sinbandhit, S.;
Toupet, L.; Costuas, K.; Halet, J.-F.; Lapinte, C. Organometallics 2007,
26, 874–896.
(12) Paul, F.; Toupet, L.; The´pot, J.-Y.; Costuas, K.; Halet, J.-F.; Lapinte,
C. Organometallics 2005, 24, 5464–5478.
(13) Touchard, D.; Haquette, P.; Guesmi, S.; Le Pichon, L.; Daridor,
A.; Toupet, L.; Dixneuf, P. H. Organometallics 1997, 16, 3640–3648.
(14) (a) Hurst, S. K.; Cifuentes, M. P.; Morrall, J. P. L.; Lucas, N. T.;
Whittall, I. R.; Humphrey, M. G.; Asselberghs, I.; Persoons, A.; Samoc,
M.; Luther-Davies, B.; Willis, A. C. Organometallics 2001, 20, 4664–4675.
(b) Morrall, J. P.; Cifuentes, M. P.; Humphrey, M. G.; Kellens, R.; Robijns,
E.; Asselberghs, I.; Clays, K.; Persoons, A.; Samoc, M.; Willis, A. C. Inorg.
Chim. Acta 2006, 359, 998–1005.
(15) Rigaut, S.; Touchard, D.; Dixneuf, P. H. Coord. Chem. ReV. 2004,
248, 1585–1601.
(16) Chatt, J.; Hayter, R. G. J. Chem. Soc. 1961, 896–904.
(17) Polam, J. R.; Porter, L. C. J. Coord. Chem. 1993, 29, 109–119.
(18) Younus, M.; Long, N. J.; Raithby, P. R.; Lewis, J.; Page, N. A.;
White, A. J. P.; Williams, D. J.; Colbert, M. C. B.; Hodge, A. J.; Khan,
M. S.; Parker, D. G. J. Organomet. Chem. 1999, 578, 198–209.
Results
Synthesis and Characterization of the Ru(II) Com-
plexes. To date, several Ru(II) complexes of type 1-X featuring
strongly electron-withdrawing to moderately electron-releasing
substituents have been reported.13,14 The compounds required
for the present study (X ) NO2, C(O)H, C(O)Me, F, H, and
OMe) were therefore obtained according to these procedures.
However, a complex possessing a strongly electron-releasing
group, e.g. the dimethylamino group, was also needed for
comparison. The synthesis of this complex was undertaken
according to an original procedure inspired from the Ru(II)
allenylidene synthesis recently reported by Touchard and co-
workers.15 Instead of starting from the known cis-(η2-
dppe)2RuCl2 precursor complex,16 this synthetic approach starts
from the triflate Ru(II) precursor2,17 and allows isolation of the
corresponding vinylidene salt under mild conditions from para-
dimethylaminophenylacetylene (Scheme 1). The latter complex
was not characterized, but rather was deprotonated using tBuOK
to yield the desired Ru(II) acetylide complex (1-NMe2) in
modest yield (37%) after chromatographic separation. This new
complex was completely characterized by elemental analysis,
mass spectrometry, and routine spectroscopies (Supporting
Information).
The cyclic voltammetry (CV) of the previous Ru(II) com-
pounds along with their IR and 13C NMR spectra in solution
were systematically recorded. As expected from previous