Crystal Growth & Design
Article
Figure 10. M06-2X/6-311+G* optimized structures of several theoretical models and X-ray structures of compounds 3 and 6. The NICS values
(ppm) of some four-membered rings are indicated.
́
(d) von Rague Schleyer, P.; Najafian, K.; Kiran, B.; Jiao, H. J. Org.
4. CONCLUSIONS
Chem. 2000, 65, 426−431 and references cited therein.
In this manuscript, the aromatic character of the four-
membered ring in squaric acid derivatives and, principally,
how it changes when it participates in noncovalent interactions
have been studied theoretically using the nucleus independent
chemical shift (NICS). Moreover, the aromaticity in these rings
has been also studied using an unprecedented criterion, which
is the analysis of the noncovalent interactions involving the ring
in the solid state that has been performed using the Cambridge
Structural Database. Apart from confirming the previously
observed ability of the four-membered ring to participate in
π-stacking interactions, it should be emphasized the significant
number of structures where the ring participated in ion−π and
C−H/π interactions that has not been previously analyzed in
detail. Moreover, several squaric acid derivatives have been
synthesized and characterized by single crystal X-ray diffraction
analyses to further analyze this topic and confirm the ability of
the squaric acid derivatives to establish hydrogen bonds and
π−π stacking interactions in the solid state.
(2) West, R.; Niu, H.-Y.; Powell, D. L.; Evans, M. V. J. Am. Chem. Soc.
1960, 82, 6240.
(3) (a) Aihara, J. J. Am. Chem. Soc. 1981, 103, 1633. (b) Jug, K. J. Org.
Chem. 1983, 48, 1344.
(4) Semmingsen, D.; Groth, P. J. Am. Chem. Soc. 1987, 109, 7238.
(5) (a) Sun, W.; Hong, L.; Zhu, G.; Wang, Z.; Wei, X.; Ni, J.; Wang,
R. Org. Lett. 2014, 16, 544. (b) Wang, X.-B.; Li, T.-Z.; Sha, F.; Wu, X.-
Y. Eur. J. Org. Chem. 2014, 739. (c) Kumar, V.; Mukherjee, S. Chem.
Commun. 2013, 49, 11203−11205. (d) Yang, K. S.; Nibbs, A. E.;
Turkmen, Y. E.; Rawal, V. H. J. Am. Chem. Soc. 2013, 135, 16050−
16053. (e) Kasaplar, P.; Rodriguez-Escrich, C.; Pericas, M. A. Org. Lett.
2013, 15, 3498−3501. (f) Kasaplar, P.; Riente, P.; Hartmann, C.;
Pericas, M. A. Adv. Synt. Catal. 2012, 354, 2905−2910.
(6) (a) Elmes, R. B. P.; Turner, P.; Jolliffe, K. A. Org. Lett. 2013, 15,
5638−5641. (b) Bera, K.; Namboothiri, I. N. N. Chem. Commun. 2013,
49, 10632−10634. (c) Jin, C.; Zhang, M.; Wu, L.; Guan, Ya.; Pan, Y.;
Jiang, J.; Lin, C.; Wang, L. Chem. Commun. 2013, 49, 2025−2027.
(d) Lopez, C.; Sanna, E.; Carreras, L.; Vega, M.; Rotger, C.; Costa, A.
Chem.Asian J. 2013, 8, 84−87. (e) Soberats, B.; Martinez, L.; Sanna,
E.; Sampedro, A.; Rotger, C.; Costa, A. Chem.Eur. J. 2012, 18,
7533−7542. (f) Amendola, V.; Fabbrizzi, L.; Mosca, L.; Schmidtchen,
F.-P. Chem.Eur. J. 2011, 17, 5972.
ASSOCIATED CONTENT
■
S
* Supporting Information
(7) Busschaert, N.; Kirby, I. L.; Young, S.; Coles, S. J.; Horton, P. N.;
Light, M. E.; Gale, P. A. Angew. Chem., Int. Ed. 2012, 51, 4426−4430.
(8) (a) Portell, A.; Prohens, R. Cryst. Growth Des. 2014, 14, 397.
(b) Portell, A.; Alcobe, X.; Lawson Daku, L. M.; Cerny, R.; Prohens, R.
Powder Diffraction 2013, 28, S470−S480. (c) Portell, A.; Font-Bardia,
M.; Prohens, R. Cryst. Growth Des. 2013, 13, 4200−4203. (d) Prohens,
R.; Portell, A.; Alcobe, X. Cryst. Growth Des. 2012, 12, 4548−4553.
(9) (a) Kolev, T.; Seidel, R. W.; Mayer-Figge, H.; Spiteller, M.;
Sheldrick, W. S.; Koleva, B. B. Spectrochim. Acta 2009, A72, 502−509.
(b) Kolev, T.; Mayer-Figge, H.; Seidel, R. W.; Sheldrick, W. S.;
Spiteller, M.; Koleva, B. B. J. Mol. Struct. 2009, 919, 246−254.
(c) Ivanova, B.; Spiteller, M. Spectrochim. Acta 2010, A77, 849−855.
(d) Georgopoulos, S. L.; Edwards, H. G. M.; De Oliveira, L. F. C.
Spectrochim. Acta 2013, A111, 54−61.
Experimental characterization and X-ray crystallographic
information files (CIF) of the synthesized squaric acid
derivatives are available free of charge via the Internet at
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(10) (a) Qin, C.; Numata, Y.; Zhang, S.; Yang, X.; Islam, A.; Zhang,
K.; Chen, H.; Han, L. Adv. Funct. Mater. 2014, DOI: 10.1002/
adfm.201303769. (b) Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz,
■
A.B. and A.F. thank DGICYT of Spain (CTQ2011-27512/BQU
and CONSOLIDER INGENIO CSD2010-00065, FEDER
́
Z. J. Mol. Struct. 2012, 1029, 28−34. (c) Barczynski, P.; Dega-Szafran,
́ ́
funds) and the Direccio General de Recerca i Innovacio del
Govern Balear (Project 23/2011, FEDER funds) for funding.
Z.; Katrusiak, A.; Szafran, M. J. Mol. Struct. 2012, 1018, 28−34.
(11) Braga, D.; Bazzi, C.; Grepioni, F.; Novoa, J. J. New J. Chem.
1999, 23, 577−579.
REFERENCES
́
(12) Stefanos L. Georgopoulos, S. L.; Diniz, R.; Yoshida, M. I.;
■
Speziali, N. L.; Dos Santos, N. F.; Junqueira, G. M. A.; de Oliveira, L.
F. C. J. Mol. Struct. 2006, 794, 63−70.
(1) (a) Korkmaz, U.; Bulut, A. J. Mol. Struct. 2013, 1050, 61−68.
(b) Korkmaz, U.; Uca
2011, 22, 1249−1259. (c) Frontera, A.; Deya,
Garau, C.; Ballester, P.; Costa, A. Chem.Eur. J. 2002, 8, 433−438.
̧
r, I.; Bulut, A.; Buyukgungor, O. Struct. Chem.
̈
̈
̈
̈
(13) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem., Int.
Ed. 2003, 42, 1210−1250.
̀
P. M.; Quinonero, D.;
̃
2586
dx.doi.org/10.1021/cg500264k | Cryst. Growth Des. 2014, 14, 2578−2587