ACID CATALYSTS BASED ON MESOPOROUS AROMATIC FRAMEWORKS
863
FCn
Other
products
F conversion
Fig. 7. Condensation of furfural with n-aldehyde in the presence of PAF–SO3H catalyst and distribution of reaction products. Reaction
conditions: 1.2 mmol of furfural, 1.2 mmol of n-aldehyde, 1 mL of DMF, 20 mg of PAF–SO3H (2.5 mol %), 130°C, 4 h.
Chem. Int. Ed., 2007, vol. 46, no. 38, pp. 7164–7183.
The reaction was performed in toluene and DMF at
equimolar ratios of the substrates. Irrespective of the
solvent, the maximal conversion, 23–24%, was reached
for hexanal and heptanal. As the carbon chain length
in the aldehyde molecule is increased, the furfural
conversion decreases, which may be associated with an
increase in the molecule size. The major products are
substituted α-alkyl-β-furanylacroleins, or FCn (Fig. 7).
4. Deng, Q., Xu, J., Han, P., Pan, L., Wang, L., Zhang, X.,
and Zou, J.J., Fuel Process. Technol., 2016, vol. 148,
pp. 361–366.
5. Liang, G., Wang, A., Zhao, X., Lei, N., and Zhang, T.,
Green Chem., 2016, vol. 18, no. 11, pp. 3430–3438.
6. Chheda, J.N. and Dumesic, J.A., Catal. Today, 2007,
vol. 123, no. 1, pp. 59–70.
7. Faba, L., Díaz, E., and Ordóñez, S., Appl. Catal. B:
Environmental, 2012, vol. 113, pp. 201–211.
CONCLUSIONS
8. Sádaba, I., Ojeda, M., Mariscal, R., Richards, R., and
López Granados, M., ChemPhysChem, 2012, vol. 13, no.
14, pp. 3282–3292.
The catalyst based on mesoporous aromatic frame-
works modified with sulfonic acid group, PAF–SO3H,
was prepared. Its catalytic activity in aldol condensation
of furfural with carbonyl compounds (acetone and a se-
ries of aldehydes) was studied. The use of PAF–SO3H
in an amount of 2.5 mol % allows preparation of the
condensation products in a total yield of up to 25%. The
catalyst practically preserves its activity in several cy-
cles.
9. Hora, L., Kelbichová, V., Kikhtyanin, O., Bortnovskiy, O.,
and Kubička, D., Catal. Today., 2014, vol. 223, pp. 138–
147.
10. Kikhtyanin, O., Tišler, Z., Velvarská, R., and Kubička, D.,
Appl. Catal. A: General, 2017, vol. 536, pp. 85–96.
11. Hájková, P. and Tišler, Z., Catal. Lett., 2017, vol. 147,
no. 2, pp. 374–382.
CONFLICT OF INTEREST
12. Hora, L., Kikhtyanin, O., Čapek, L., Bortnovskiy, O., and
Kubička, D., Catal. Today., 2015, vol. 241, pp. 221–230.
The authors declare that they have no conflict of
interest.
13. Tian, J., Chen, L., Zhang, D.-W., Liu, Y., and Li, Z.-T.,
Chem. Commun., 2016, vol. 52, pp. 6351–6357.
14. Merino, E., Verde-Sesto, E., Maya, E.M., Corma, A.,
Iglesias, M., and Sánchez, F., Appl. Catal. A, 2014,
vol. 469, pp. 206–212.
REFERENCES
1. Climent, M.J., Corma, A., and Iborra, S., Green Chem.,
2014, vol. 16, no. 2, pp. 516–547.
15. Fritsch, J., Drache, F., Nickerl, G., Böhlmann, W., and
Kaskel, S., Micropor. Mesopor. Mater., 2013, vol. 172,
pp. 167–173.
2. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I.,
and Granados, M.L., Energy Environ. Sci., 2016, vol. 9,
no. 4, pp. 1144–1189.
16. Goesten, M.G., Szecsenyi, A., de Lange, M.F.,
Bavykina, A., Sai Sankar Gupta, K.B., Kapteijn, F., and
3. Chheda, J.N., Huber, G.W., and Dumesic, J.A., Angew.
RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 92 No. 6 2019