Cyclooct-2-ynol and Its Functionalization by Mitsunobu Chemistry
hexane/ethyl acetate, 3:1) to afford 18 (0.027 g, 28% yield) as a
highly viscous oil; Rf = 0.23 (EE/CH, 3:1). 1H NMR (400 MHz,
[D6]DMSO): δ = 8.17 [d, J = 8.4 Hz, 2H (major isomer), H-Ar],
Supporting Information (see footnote on the first page of this arti-
1
cle): Copies of the H and 13C NMR spectra of all key intermedi-
3
ates and final products.
8.02 [d, 3J = 8.4 Hz, 2H (minor isomer), H-Ar], 7.67 [d, 3J =
8.4 Hz, 2H (major isomer), H-Ar], 7.59 [d, 3J = 8.4 Hz, 2H (minor
isomer), H-Ar], 7.06 [s, 2H (major isomer), H-olefin], 6.69 [s, 2H
(minor isomer), H-olefin], 5.36 (dd, 3J = 12.5 Hz, 3J = 3.8 Hz, 1
Acknowledgments
The authors thank the Landesgraduiertenförderung Baden-
Württemberg for financial support.
3
H, CH), 4.36 (q, J = 7.0 Hz, 2 H, CH2CH3), 3.16–2.99 (m, 1 H,
CH2), 2.87–2.68 (m, 1 H, CH2), 1.98–1.86 (m, 1 H, CH2), 1.86–
3
1.50 (m, 4 H, CH2), 1.58–1.42 (m, 2 H, CH2), 1.35 (t, J = 7.1 Hz,
[1] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, An-
gew. Chem. 2002, 114, 2708; Angew. Chem. Int. Ed. 2002, 41,
2596–2599.
3 H, CH2CH3) ppm. 13C NMR (100 MHz, [D6]DMSO): δ = 170.6
(Cquat, CO2Et), 169.1 (Cquat, CO2Et), 164.8 (Cquat, C-imid), 164.8
(Cquat, C-imid), 144.7 (Cquat, C-Ar), 142.6 (Cquat, C-Ar), 139.6
[2] C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002,
(Cquat, C-Ar), 139.1 (Cquat, C-Ar), 134.7 (+, C-olefin), 134.0 (Cquat
,
67, 3057–3064.
C-Ar), 133.9 (+, C-olefin), 132.2 (Cquat, C-Ar), 130.8 (Cquat, C-Ar),
130.6 (+, C-Ar), 130.3 (+, C-Ar), 125.9 (+, C-Ar), 125.8 (+, C-Ar),
61.3 (–, CO2CH2CH3), 61.2 (–, CO2CH2CH3), 46.6 (+, CH), 44.1
(+, CH), 29.5 (–, CH2), 29.4 (–, CH2), 26.3 (–, CH2), 25.6 (–, CH2),
24.6 (–, CH2), 24.4 (–, CH2), 24.3 (–, CH2), 23.9 (–, CH2), 20.9
[3] For reviews, see: a) J. Lahann, Click Chemistry: A Universal
Ligation Strategy for Biotechnology and Materials Science, in:
Click Chemistry for Biotechnology and Materials Science (Ed.:
J. Lahann), Wiley, Chichester, UK, 2009; b) W. H. Binder, R.
Sachsenhofer, Macromol. Rapid Commun. 2007, 28, 15–54; c)
W. H. Binder, R. Sachsenhofer, Macromol. Rapid Commun.
2008, 29, 952–981; d) S. Bräse, C. Gil, K. Knepper, V. Zimmer-
mann, Angew. Chem. 2005, 117, 5320–5374; Angew. Chem. Int.
Ed. 2005, 44, 5188–5240; e) D. K. Kölmel, N. Jung, S. Bräse,
Austr. J. Chem. 2014, DOI: 10.1071/CH13533.
(–, CH ), 14.1 (+, CH ) ppm. IR (ATR platinum diamond): ν =
˜
2
3
2925 (w), 2854 (w), 1702 (m), 1606 (m), 1513 (w), 1475 (w), 1445
(w), 1387 (m), 1354 (m), 1272 (m), 149 (m), 1100 (m), 1019 (m),
1003 (m) cm–1. MS (EI, 70 eV): m/z (%) = 395 (100) [M + H]+, 270
(35) [C17H20NO2]+. HRMS (EI): calcd. for C21H23O4N4 395.1714;
found 395.1712.
[4] P. Thirumurugan, D. Matosiuk, K. Jozwiak, Chem. Rev. 2013,
113, 4905–4979.
[5] N. J. Agard, J. A. Prescher, C. R. Bertozzi, J. Am. Chem. Soc.
2004, 126, 15046–15047.
[6] G. Wittig, A. Krebs, Chem. Ber. 1961, 94, 3260–3275.
[7] E. M. Sletten, C. R. Bertozzi, Angew. Chem. 2009, 121, 7108–
7133; Angew. Chem. Int. Ed. 2009, 48, 6974–6998.
[8] a) M. F. Debets, S. S. van Berkel, S. Schoffelen, F. P. J. T.
Rutjes, J. C. M. van Hest, F. L. van Delft, Chem. Commun.
2010, 46, 97–99; b) J. A. Codelli, J. M. Baskin, N. J. Agard,
C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 11486–11493.
[9] C. Wendeln, I. Singh, S. Rinnen, C. Schulz, H. F. Arlinghaus,
G. A. Burley, B. J. Ravoo, Chem. Sci. 2012, 3, 2479–2484.
[10] N. J. Agard, J. M. Baskin, J. A. Prescher, A. Lo, C. R. Bertozzi,
ACS Chem. Biol. 2006, 1, 644–648.
[11] J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V.
Chang, I. A. Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, Proc.
Natl. Acad. Sci. USA 2007, 104, 16793–16797.
[12] a) A. Kuzmin, A. Poloukhtine, M. A. Wolfert, V. V. Popik, Bio-
conjugate Chem. 2010, 21, 2076–2085; b) J. C. Jewett, E. M.
Sletten, C. R. Bertozzi, J. Am. Chem. Soc. 2010, 132, 3688–
3690; c) B. R. Varga, M. Kállay, K. Hegyi, S. Béni, P. Kele,
Chem. Eur. J. 2012, 18, 822–828.
[13] J. Dommerholt, S. Schmidt, R. Temming, L. J. A. Hendriks,
F. P. J. T. Rutjes, J. C. M. van Hest, D. J. Lefeber, P. Friedl, F. L.
van Delft, Angew. Chem. 2010, 122, 9612; Angew. Chem. Int.
Ed. 2010, 49, 9422–9425.
[14] C. B. Reese, A. Shaw, J. Am. Chem. Soc. 1970, 92, 2566–2568.
[15] M. F. Debets, S. S. van Berkel, J. Dommerholt, A. J. Dirks,
F. P. J. T. Rutjes, F. L. van Delft, Acc. Chem. Res. 2011, 44,
805–815.
[16] a) G. Lukinavicˇius, K. Umezawa, N. Olivier, A. Honigmann,
G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa Jr.,
Z.-G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Egge-
ling, S. Manley, K. Johnsson, Nature Chem. 2013, 5, 132–139;
b) I. Singh, C. Wendeln, A. W. Clark, J. M. Cooper, B. J. Ra-
voo, G. A. Burley, J. Am. Chem. Soc. 2013, 135, 3449–3457; c)
A. Takahashi, Y. Suzuki, T. Suhara, K. Omichi, A. Shimizu,
K. Hasegawa, N. Kokudo, S. Ohta, T. Ito, Biomacromolecules
2013, 14, 3581–3588; d) K. Vogel, M. Glettenberg, H. Schro-
eder, C. M. Niemeyer, Small 2013, 9, 255–262.
Ethyl 4-{4-[3-(tert-Butylthio)-2,5-dioxopyrrolidin-1-yl]-4,5,6,7,8,9-
hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl}benzoate (19): Triazole
18 (0.020 g, 0.051 mmol, 1.00 equiv.) was dissolved in DMSO
(2 mL) and tert-butylthiol (0.006 g, 0.066 mmol, 1.30 equiv.), and
the resulting mixture was stirred for 12 h. After this time, the excess
amount of thiol was removed under high vacuum. The DMSO
solution was then diluted with water (5 mL), and the aqueous
phase was extracted with ethyl acetate (2ϫ 2 mL). The organic
phase was washed thoroughly with water (10ϫ 2 mL). The organic
phase was dried with sodium sulfate, and the solvent was removed
to yield pure product 19 (0.024 g, 98% yield, complex mixture of
1
regioisomers and diastereomers) as a highly viscous oil. H NMR
(400 MHz, [D6]DMSO): δ = 8.24–8.12 (m, 2 H, H-Ar), 7.72–7.56
3
(m, 2 H, H-Ar), 5.47–5.26 (m, 1 H, CHN), 4.37 (q, J = 7.1 Hz, 2
H, CO2CH2), 4.15–4.04 (m, 1 H, CHS), 3.39–3.27 (m, 1 H,
NCOCH2), 3.23–3.04 (m, 1 H, NCOCH2), 2.94–2.68 (m, 2 H,
CH2), 2.65–2.54 (m, 1 H, CH2), 1.93–1.46 (m, 7 H, CH2), 1.46–
1.28 (m, 11 H, CH3), 1.28–1.12 (m, 1 H, CH3) ppm. 13C NMR
(100 MHz, [D6]DMSO): δ = 176.2 (Cquat, CO2Et), 176.1 (Cquat
CO2Et), 174.5 (Cquat, C-imid), 164.8 (Cquat, C-imid), 141.8 (Cquat
,
,
C-Ar), 141.8 (Cquat, C-Ar), 139.07 (Cquat, C-Ar), 134.5 (Cquat, C-
Ar), 130.8 (Cquat, C-Ar), 130.7 (+, C-Ar), 125.77 (+, C-Ar), 61.2
(–, CO2CH2), 47.6 (+, CHN), 44.4 (Cquat, CS), 44.4 (Cquat, CS),
38.9 (–, CH2CHS), 38.8 (+, CHS), 31.0 [+, CH3(tert-butyl)], 31.0
[+, CH3(tert-butyl)], 28.0 (–, CH2), 28.0 (–, CH2), 25.6 (–, CH2),
25.6 (–, CH2), 24.4 (–, CH2), 24.3 (–, CH2), 24.3 (–, CH2), 20.8
(–, CH2), 14.1 [+, CH3(ester)] ppm. IR (ATR platinum diamond):
ν = 2924 (vw), 2862 (vw), 1776 (vw), 1702 (w), 1607 (vw), 1513
˜
[17] K. Banert, O. Plefka, Angew. Chem. 2011, 123, 6295; Angew.
Chem. Int. Ed. 2011, 50, 6171–6174.
[18] L. G. Menchikov, A. V. Vorogushin, O. S. Korneva, O. M. Ne-
fedov, Mendeleev Commun. 1995, 5, 223–224.
(vw) cm–1. MS (EI, 70 eV): m/z (%) = 484 (33) [M]+, 456 (57) [M –
N2]+, 270 (100) [C17H20NO2]+. HRMS (EI): calcd. for
C25H32O4N4S 484.2139; found 484.2138.
Eur. J. Org. Chem. 2014, 1280–1286
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1285