Organic Letters
Letter
and acetic acid in hexanes at 0 °C, followed by C4-OAc
deprotection of the resulting pyran ring, afforded the desired
pyran alcohol 23 in 40% yield (three steps). This, upon TBS
protection with TBSOTf, followed by selective deprotection of
TBDPS under basic conditions,19 furnished primary alcohol 24
in 77% yield over two steps. Alcohol 24 was oxidized with
Dess-Martin periodinane to give an aldehyde which was
subjected to Julia−Kocienski olefination with known sulfone
25,20 to give olefin 26 in 80% yield. Finally DDQ mediated
PMB deprotection followed by oxidation of the resulting
primary alcohol completed the synthesis of the aldehyde
fragment 7.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
K.M.R. and V.Y. thank CSIR, New Delhi for a research
fellowship. S.G. is thankful to the Council of Scientific and
Industrial Research for a CSIR-Young Scientist Research Grant.
We are also thankful to Dr. A. C. Kunwar for useful suggestions.
The end game for the construction of the aglycone is
depicted in Scheme 4. The Horner−Wadsworth−Emmons
REFERENCES
■
(1) Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Nat.
Rev. Drug Discovery 2009, 8, 69−85.
Scheme 4. Synthesis of Mandelalide A Aglycone 5
(2) Sikorska, J.; Hau, A. M.; Anklin, C.; Parker-Nance, S.; Davies-
Coleman, M. T.; Ishmael, J. E.; McPhail, K. L. J. Org. Chem. 2012, 77,
6066−6075.
(3) Willwacher, J.; Furstner, A. Angew. Chem., Int. Ed. 2014, 53,
̈
4217−4221.
(4) Nicolaou, K. C.; Piscopio, A. D.; Bertinato, P.; Chakraborty, T.
K.; Minowa, N.; Koide, K. Chem.Eur. J. 1995, 1, 318−333.
(5) Drouet, K. E.; Theodorakis, E. A. Chem.Eur. J. 2000, 6, 1987−
2001.
(6) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155−4156.
(7) (a) Kocienski, P. J.; Bell, A.; Blakemore, P. R. Synlett 2000, 365−
366. For a recent review on this topic, see: (b) Blakemore, P. R. J.
Chem. Soc., Perkin Trans. 1 2002, 2563−2585.
(8) Paquette, L. A.; Chang, S.-K. Org. Lett. 2005, 7, 3111−3114.
(9) Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron Lett. 1982,
23, 885−888.
(10) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev.
1994, 94, 2483−2547.
(11) Wagner, H.; Koert, U. Angew. Chem., Int. Ed. 1994, 33, 1873−
1875.
(12) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734−736.
(13) (a) Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173−2174.
(b) Li, P.; Li, J.; Arikan, F.; Ahlbrecht, W.; Dieckmann, M.; Menche,
D. J. Org. Chem. 2010, 75, 2429−2444.
reaction under Masamune−Roush conditions21 between 6 and
7 in the presence of LiCl and DBU in MeCN at 0 °C furnished
coupled product 28 in 77% yield (two steps). This set the stage
for the crucial intramolecular Heck reaction.22 Accordingly
compound 28 on treatment with Pd(OAc)2 and Cs2CO3 in
DMF furnished the cyclized compound 29 in 58% yield with
the required geometry of the diene unit, which on global
desilylation afforded 5 in 87% yield and thus the synthesis of
aglycone with all required functionalities was completed. The
spectral data of 5 (1H and 13C)23 closely matched the data of
(14) Vintonyak, V. V.; Maier, M. E. Org. Lett. 2007, 9, 655−658.
(15) (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc.
1982, 104, 1737−1739. (b) Chakraborty, T. K.; Suresh, V. R. Chem.
Lett. 1997, 6, 565−566.
(16) Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org.
Chem. 1986, 51, 432−439.
(17) Dahanukar, V. H.; Rychnovsky, S. D. J. Org. Chem. 1996, 61,
8317−8320.
(18) (a) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. J. Org. Chem. 2001,
66, 4679−4686. (b) Rychnovsky, S. D.; Thomas, C. R. Org. Lett. 2000,
2, 1217−1219.
the macrocyclic core of the structure synthesized by Furstner.
̈
In conclusion we have developed a convergent synthetic
strategy for the synthesis of the aglycone of the proposed
structure of mandelalide A in 32 total steps (18 longest linear
sequence from compound 12) with 6.3% overall yield. The
strategy developed here is flexible and can be used for the
synthesis of various stereochemical analogues of the proposed
structure of mandelalide A for structural reassignment. Efforts
toward this are currently underway.
(19) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.; Schelhaas, M.
J. Am. Chem. Soc. 2001, 123, 10942−10953.
(20) Zhu, K.; Panek, J. S. Org. Lett. 2011, 13, 4652−4655.
(21) (a) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.;
Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25,
2183−2186. (b) Furstner, A.; Nevado, C.; Waser, M.; Tremblay, M.;
̈
Chevrier, C.; Teply, F.; Aïssa, C.; Moulin, E.; Muller, O. J. Am. Chem.
́
̈
Soc. 2007, 129, 9150−9161.
(22) (a) Bhatt, U.; Christmann, M.; Quitschalle, M.; Cluas, E.;
Kalesse, M. J. Org. Chem. 2001, 66, 1885−1893. (b) Jagel, J.; Maier, M.
̈
E. Synthesis 2009, 2881−2892. For reviews related to the Heck
reaction, see: (c) Link, J. T. Org. React. 2002, 60, 157−534.
ASSOCIATED CONTENT
■
1
(23) A detailed comparison of H and 13C chemical shifts between
S
* Supporting Information
mandelalide A (isolation), mandelalide A (synthetic), and compound
5 is available in the Supporting Information.
Experimental procedures and full spectroscopic data for all
compounds. This material is available free of charge via the
C
dx.doi.org/10.1021/ol500875e | Org. Lett. XXXX, XXX, XXX−XXX