ACCEPTED MANUSCRIPT
5
activated non-radioactive decay processes23, 30. Compounds 10a,
References
10c and 10d presented similar behavior (see supporting
information).
1. Lee, J. H.; Han, M.-J.; Hwang, S. H.; Jang, I.; Lee, S. J.; Yoo, S.
H.; Jho, J. Y.; Park, S.-Y., Self-assembled discotic liquid crystals
formed by hydrogen bonding of alkoxystilbazoles. Tetrahedron
Lett. 2005, 46, 7143-7146.
2. (a) Thiebaut, O.; Bock, H.; Grelet, E., Face-on oriented bilayer of
two discotic columnar liquid crystals for organic donor-acceptor
heterojunction. J. Am. Chem. Soc. 2010, 132, 6886-6887; (b)
Kelber, J.; Achard, M.-F.; Durola, F.; Bock, H., Distorted Arene
Core Allows Room-Temperature Columnar Liquid-Crystal Glass
with Minimal Side Chains. Angew. Chem., Int. Ed. 2012, 51,
5200-5203, S5200/1-S5200/4; (c) Sergeyev, S.; Pisula, W.;
Geerts, Y. H. Discotic liquid crystals: a new generation of organic
semiconductors. Chem. Soc. Rev. 2007, 36, 1902-1929.
3. Dambal, H. K.; Yelamaggad, C. V., Technologically promising,
room temperature luminescent columnar liquid crystals derived
from s-triazine core: molecular design, synthesis and
characterization. Tetrahedron Lett. 2012, 53, 186-190.
4. (a) Westphal, E.; Bechtold, I. H.; Gallardo, H., Synthesis and
Optical/Thermal Behavior of New Azo Photoisomerizable
Discotic Liquid Crystals. Macromolecules (Washington, DC, U.
S.) 2010, 43, 1319-1328; (b) Deibel, C.; Janssen, D.; Heremans,
P.; De, C. V.; Geerts, Y.; Benkhedir, M. L.; Adriaenssens, G. J.,
Charge transport properties of
a metal-free phthalocyanine
discotic liquid crystal. Org. Electron. 2006, 7, 495-499.
5. Christ, T.; Gluesen, B.; Greiner, A.; Kettner, A.; Sander, R.;
Stuempflen, V.; Tsukruk, V.; Wendorff, J. H., Columnar discotics
for light emitting diodes. Adv. Mater. (Weinheim, Ger.) 1997, 9,
48-52.
6.
Bushby, R. J.; Kawata, K., Liquid crystals that affected the world:
discotic liquid crystals. Liq. Cryst. 2011, 38, 1415-1426; (b)
Nelson, J., Perspectives: Solar energy: Solar cells by self-
assembly? Science (Washington, DC, U. S.) 2001, 293, 1059-
1060; (c) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.;
Moons, E.; Friend, R. H.; MacKenzie, J. D., Self-organized
discotic liquid crystals for high-efficiency organic photovoltaics.
Science (Washington, DC, U. S.) 2001, 293, 1119-1122.
7. (a) O'Neill, M.; Kelly, S. M., Ordered Materials for Organic
Electronics and Photonics. Adv. Mater. (Weinheim, Ger.) 2011,
23, 566-584; (b) O'Neill, M.; Kelly, S. M., Liquid crystals for
charge transport, luminescence, and photonics. Adv. Mater.
(Weinheim, Ger.) 2003, 15, 1135-1146.
8. Gallardo, H.; Ferreira, M.; Vieira, A. A.; Westphal, E.; Molin, F.;
Eccher, J.; Bechtold, I. H., Columnar mesomorphism of bent-rod
mesogens containing 1,2,4-oxadiazole rings. Tetrahedron. 2011,
67, 9491-9499.
Figure 4. a) Emission spectra of compound 10b recorded during heating
from crystal to the isotropic phase. (b) Maximum intensity as a function of
the temperature.
9. (a) Yoon, S.-J.; Kim, J. H.; Kim, K. S.; Chung, J. W.; Heinrich,
B.; Mathevet, F.; Kim, P.; Donnio, B.; Attias, A.-J.; Kim, D.;
Park, S. Y., Mesomorphic Organization and Thermochromic
Luminescence of Dicyanodistyrylbenzene-Based Phasmidic
Molecular Disks: Uniaxially Aligned Hexagonal Columnar Liquid
Crystals at Room Temperature with Enhanced Fluorescence
Emission and Semiconductivity. Adv. Funct. Mater. 2012, 22, 61-
69; (b) Kim, C.; Marshall, K. L.; Wallace, J. U.; Ou, J. J.; Chen, S.
H., Novel cholesteric glassy liquid crystals comprising benzene
functionalized with hybrid chiral-nematic mesogens. Chem Mater
2008, 20 (18), 5859-5868. (c) Tavares, A., Schneider, P. H. and
Merlo, A. A., 3,5-Disubstituted isoxazolines as potential
molecular kits for liquid-crystalline materials. Eur. J. Org. Chem.
2009, 889-897.
10. (a) Dimitrova, K.; Hauschild, J.; Zaschke, H.; Schubert, H., Liquid
crystalline 1,3,4-thiadiazoles. I. Biphenyl- and terphenyl-
analogous 1,3,4-thiadiazoles. J. Prakt. Chem. 1980, 322, 933-44;
(b) Girdziunaite, D.; Tschierske, C.; Novotna, E.; Kresse, H.;
Hetzheim, A., New mesogenic 1,3,4-oxadiazole derivatives. Liq.
Cryst. 1991, 10, 397-407.
Conclusions
A new series of compounds derived from the 1,3,4-oxadiazole
heterocyclic was designed and synthesized. Four compounds
presented liquid crystalline properties with hexagonal columnar
mesomorphism and good thermal stability. The mesomorphic
properties are closely dependent on the aliphatic chains
connected to the rigid disc-like core (their chirality and the
presence of OH groups). For compounds 10c and 10d the
hexagonal columnar phase was preserved until room temperature
with no evidence of crystallization. All of them presented intense
blue photoluminescence in solution and in solid films. These
characteristics together with the strong overlapping π molecular
orbitals make these materials good candidates for applications in
organic electronic devices.
11. Qu, S.; Wang, L.; Liu, X.; Li, M., Evolution from Lyotropic
Liquid Crystal to Helical Fibrous Organogel of an Achiral
Fluorescent Twin-Tapered Bi-1,3,4-oxadiazole Derivative. Chem.-
-Eur. J. 2011, 17 , 3512-3518.
Acknowledgements
12. (a) Qu, S.; Lu, Q.; Wu, S.; Wang, L.; Liu, X., Two Dimensional
Directed [small pi]-[small pi] Interactions in A Linear Shaped Bi-
1,3,4-oxadiazole Derivative to Achieve Organic Single Crystal
with Highly Polarized Fluorescence and Amplified Spontaneous
Emissions. Journal of Materials Chemistry 2012; (b) Wang, H.;
Zhang, F.; Bai, B.; Zhang, P.; Shi, J.; Yu, D.; Zhao, Y.; Wang, Y.;
Li, M., Synthesis, liquid crystalline properties and fluorescence of
The authors are grateful to the Brazilian governmental
agencies CNPq, CAPES, INCT/INEO, INCT-Catálise and
PRONEX/FAPESC for financial support. The XRD experiments
were carried out in the Laboratório de Difração de Raios-X
(LDRX-CFM/UFSC).