174
A. M. Riley et al. / Tetrahedron: Asymmetry 17 (2006) 171–174
J. Chem. Soc., Perkin Trans. 1 1998, 1859–1864; (e)
solution was washed with 0.5 M HCl (50 mL). Small
amounts of CH3CN were added, until two clear layers were
obtained. The organic layer was separated, dried (MgSO4)
and concentrated to give a solid. Crystallisation from hot
Painter, G. F.; Grove, S. J. A.; Gilbert, I. H.; Holmes, A.
B.; Raithby, P. R.; Hill, M. L.; Hawkins, P. T.; Stephens,
L. R. J. Chem. Soc., Perkin Trans. 1 1999, 923–935.
3. (a) Garrett, S. W.; Liu, C. S.; Riley, A. M.; Potter, B. V. L.
J. Chem. Soc., Perkin Trans. 1 1998, 1367–1368; (b)
Biamonte, M. A.; Vasella, A. Helv. Chim. Acta 1998, 81,
688–694.
CHCl3/CH3CN gave 2,6-bis(camphanate) 4 (4.33 g,
6.91 mmol, 66%) after drying in vacuo at 30 ꢁC; mp 238–
20
240 ꢁC; ½aꢂD ¼ ꢀ19:4 (c 0.9, DMF); 1H NMR d 0.97, 0.99,
1.06, 1.07, 1.15, 1.19 (6 · s, 18H, CH3 of camph), 1.58–1.68
(m, 2H, CH2 of camph), 1.98–2.14 (m, 4H, CH2 of camph),
2.50–2.61 (m, 2H, CH2 of camph), 4.57 (dddd, appears as
dq, 1H, J = 3.8, 1.9, 1.9, 1.9 Hz, H-3), 4.72–4.77 (m, 3H,
H-1, H-4 and H-5), 5.58 (dd, appears as t, 1H, J = 1.6,
1.6 Hz, H-2), 5.67 (ddd, appears as td, 1H, J = 3.8, 3.8,
1.6 Hz, H-6), 6.37 (d, 1H, J = 4.6 Hz, 4-OH), 7.42–7.46 (m,
3H, Ph) and 7.63–7.65 (m, 2H, Ph); 13C NMR (100 MHz,
d7-DMF) d 9.75, 9.80, 16.41, 16.64, 16.71 and 16.84
(6 · CH3 of camph), 29.26, 29.32, 31.09 and 31.51 (4 · CH2
of camph), 54.76, 54.80, 55.19 and 55.31 (4 · Cq of camph),
64.69 (C-2), 67.00, 70.28, 70.46 and 71.19 (4 · inositol CH),
73.83 (C-3), 91.67 and 91.69 (2 · Cq of camph), 108.13
(PhCO3), 126.11 and 128.56 (Ph CH), 130.15 ( para-CH of
Ph) and 138.11 (ipso-C of Ph); MS (FAB+) 627 [(M+H+),
100%], 429 [(M–camphO)+, 10%]; Elemental analysis;
calcd for C33H38O12 (626.65): C, 63.25; H, 6.11. Found:
C, 63.0; H, 6.10.
4. (a) Lee, H. W.; Kishi, Y. J. Org. Chem. 1985, 50, 4402–
4404; (b) Baudin, G.; Gla¨nzer, B. I.; Swaminathan, K. S.;
Vasella, A. Helv. Chim. Acta 1988, 71, 1367–1378; (c)
Billington, D. C.; Baker, R.; Kulagowski, J. J.; Mawer, I.
M.; Vacca, J. P.; deSolms, S. J.; Huff, J. R. J. Chem. Soc.,
Perkin Trans. 1 1989, 1423–1429; (d) Angyal, S. J.
Carbohydr. Res. 2000, 325, 313–320; (e) Praveen, T.;
Shashidhar, M. S. Carbohydr. Res. 2001, 330, 409–411.
5. Kim, T.-H.; Holmes, A. B. J. Chem. Soc., Perkin Trans. 1
2001, 2524–2525.
6. Riley, A. M.; Mahon, M. F.; Potter, B. V. L. Angew.
Chem., Int. Ed. Engl. 1997, 36, 1472–1474.
7. Review on the biological roles of inositol phosphates:
Irvine, R. F.; Schell, M. J. Nature Rev. Mol. Cell Biol.
2001, 2, 327–338.
8. Reviews on inositol polyphosphate and phosphoinositide
affinity probes and conjugates: (a) Prestwich, G. D. Acc.
Chem. Res. 1996, 29, 503–513; (b) Prestwich, G. D. Chem.
Biol. 2004, 11, 619–637.
9. Estevez, V. A.; Prestwich, G. D. J. Am. Chem. Soc. 1991,
113, 9885–9887.
10. (a) Cooke, A. M.; Gigg, R.; Potter, B. V. L. J. Chem. Soc.,
Chem. Commun. 1987, 1525–1526; (b) Liu, C.; Potter,
B. V. L. Tetrahedron Lett. 1994, 35, 1605–1608; (c)
Kozikowski, A. P.; Fauq, A. H.; Wilcox, R. A.; Nahorski,
S. R. J. Org. Chem. 1994, 59, 2279–2281.
14. Under these conditions, the desymmetrisation reaction
favours the 2,6-bis(camphanate) 4, whose low solubility
makes isolation of the minor product [2,4-bis(campha-
nate)] more difficult. If the method is to be used specifi-
cally for synthesis of intermediates with the 2,4-protected
pattern, the reaction can be carried out using (1R)-
(+)-camphanic chloride. This material is commercially
available, although more expensive than the (1S)-(ꢀ)-
enantiomer.
11. Dreef, C. E.; Schiebler, W.; van der Marel, G. A.; van
Boom, J. H. Tetrahedron Lett. 1991, 32, 6021–6024.
12. (a) Crystallographic data (excluding structure factors) for
3 have been deposited with the Cambridge Crystallo-
graphic Data Centre as supplementary publication num-
ber CCDC 289619. Copies of the data can be obtained,
free of charge, on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK [fax: +44(0)-1223-336033 or
e-mail: deposit@ccdc.cam.ac.uk]; While this manuscript
was in preparation, an X-ray study of two polymorphs of
3 was reported: (b) Bhosekar, G.; Murali, C.; Gonnade, R.
G.; Shashidhar, M. S.; Bhadbhade, M. M. Cryst. Growth
Des. 2005, 5, 1977–1982; (c) The 2,4,6-tri-O-methyl ether
of 3 has been mentioned in the literature,2b although no
details of its preparation were given.
13. Typical procedure: myo-inositol orthobenzoate 3 (2.80 g,
10.5 mmol) previously dried in vacuo at 60 ꢁC, was
suspended in dry CH2Cl2 (40 mL). Dry triethylamine
(3.3 mL, 24 mmol) and a catalytic amount of DMAP
(80 mg) were added, and the mixture cooled to 0 ꢁC. Solid
(1S)-(ꢀ)-camphanic chloride (4.55 g, 21.0 mmol) was
added in portions to the stirred mixture over 15 min. After
1.5 h, the cooling bath was removed and the mixture
allowed to reach room temperature. After 2 h at room
temperature, TLC (CH2Cl2/EtOAc 3:1) showed two prod-
ucts; 2,6-bis(camphanate), (Rf 0.52) and 2,4-bis(campha-
nate) (Rf 0.42), together with a trace of monocamphanates
(Rf 0.25). A small amount of (1S)-(ꢀ)-camphanic chloride
(approx. 100 mg) was added and stirring continued for
another 1 h. This step was repeated until no trace of
monocamphanates remained. The solvents were removed
by evaporation under reduced pressure. The residue was
taken up in CH2Cl2/CH3CN (5:1, 100 mL) and the
15. Data for 5: colourless crystals from EtOAc/hexane, mp
20
84.5–85.5 ꢁC; ½aꢂD ¼ þ3 (c 1, CHCl3).
16. When alcohol 5 was esterified with (1S)-(ꢀ)-camphanic
chloride, a single product was obtained, while esterifica-
tion of racemic 5 in the same way gave two diastereoiso-
meric products, clearly distinguishable by TLC and by
1H NMR spectroscopy. Thus, no detectable migration of
camphanate or MIP groups takes place during the
conversion of 4 into 5.
17. Acid hydrolysis of 2,6-di-O-benzyl-myo-inositol ortho-
acetate under similar conditions gives only 1-O-acetyl-2,6-
di-O-benzyl myo-inositol and tetraol 8 (Liu, C.; Potter, B.
V. L., unpublished results).
18. Data for 6: Rf 0.32 (EtOAc); colourless crystals from
20
ether/hexane, mp 110–110.5 ꢁC; ½aꢂD ¼ ꢀ118:9 (c 1,
MeOH). Data for 7: Rf 0.70 (EtOAc); colourless crystals
20
from EtOAc/hexane, mp 171–173 ꢁC; ½aꢂD ¼ þ36:7 (c 1,
MeOH).
19. Data for 8: mp 144–146 ꢁC (from CHCl3); Lit.4b 145.2–
20
25
146.1 ꢁC; ½aꢂD ¼ ꢀ32:3 (c 1, EtOH); Lit.4b ½aꢂD ¼ ꢀ29:3
(c 1, EtOH).
´
20. Desai, T.; Gigg, J.; Gigg, R.; Martın-Zamora, E. Carbo-
hydr. Res. 1996, 296, 97–133.
21. (a) Wang, D.-S.; Chen, C.-S. J. Org. Chem. 1996, 61,
5905–5910; (b) Aneja, S. G.; Parra, A.; Stoenescu, C.; Xia,
W.; Aneja, R. Tetrahedron Lett. 1997, 38, 803–806.
22. Chung, S. K.; Chang, Y. T.; Lee, E. J.; Shin, B. G.; Kwon,
Y. U.; Kim, K. C.; Lee, D. H.; Kim, M. J. Bioorg. Med.
Chem. Lett. 1998, 8, 1503–1506.
23. Bruzik, K. S.; Kubiak, R. J. Tetrahedron Lett. 1995, 36,
2415–2418.
24. Rudolf, M. T.; Kaiser, T.; Guse, A. H.; Mayr, G. W.;
Schultz, C. Liebigs Ann. Recl. 1997, 1861–1869.