Communication
RSC Advances
enamine Cb-nucleophile at the propargylic cation favourably
from the Re face via M-2 mode to generate (R,S)-3a.
H. Matsuzawa, Y. Tanabe, Y. Miyake and Y. Nishibayashi, J.
Am. Chem. Soc., 2010, 132, 10592; (c) G. Hattori, Y. Miyake
and Y. Nishibayashi, ChemCatChem, 2010, 2, 155; (d)
R. J. Detz, Z. Abiri, R. le Griel, H. Hiemstra and J. H. van
Maarseveen, Chem.–Eur. J., 2011, 17, 5921; (e) A. Yoshida,
G. Hattori, Y. Miyake and Y. Nishibayashi, Org. Lett., 2011,
13, 2460; (f) C. Zhang, Y.-H. Wang, X.-H. Hu, Z. Zheng, J. Xu
and X.-P. Hu, Adv. Synth. Catal., 2012, 354, 2854; (g)
T. Mino, H. Taguchi, M. Hashimoto and M. Sakamoto,
Tetrahedron: Asymmetry, 2013, 24, 1520; (h) F.-Z. Han,
F.-L. Zhu, Y.-H. Wang, Y. Zou, X.-H. Hu, S. Chen and
X.-P. Hu, Org. Lett., 2014, 16, 588; (i) F.-L. Zhu, Y.-H. Wang,
D.-Y. Zhang, J. Xu and X.-P. Hu, Angew. Chem., Int. Ed.,
2014, 53, 10223; (j) Y. Zou, F.-L. Zhu, Z.-C. Duan,
Y.-H. Wang, D.-Y. Zhang, Z. Cao, Z. Zheng and X.-P. Hu,
Tetrahedron Lett., 2014, 55, 2033; (k) M. Shibata,
K. Nakajima and Y. Nishibayashi, Chem. Commun., 2014,
50, 7874; (l) F.-L. Zhu, Y.-H. Wang, D.-Y. Zhang, X.-H. Hu,
S. Chen, C.-J. Hou, J. Xu and X.-P. Hu, Adv. Synth. Catal.,
2014, 356, 3231; (m) B. Wang, C. Liu and H. Guo, RSC Adv.,
2014, 4, 53216; (n) F. Zhu and X. Hu, Chin. J. Catal., 2015,
36, 86; (o) K. Nakajima, M. Shibata and Y. Nishibayashi, J.
Am. Chem. Soc., 2015, 137, 2472; (p) D.-Y. Zhang, L. Shao,
J. Xu and X.-P. Hu, ACS Catal., 2015, 5, 5026; (q) G. Huang,
C. Cheng, L. Ge, B. Guo, L. Zhao and X. Wu, Org. Lett.,
2015, 17, 4894.
5 For successful examples in the construction of vicinal
stereocenters in terms of diastereo- and enantioselectivity,
see: (a) L. Zhao, G.-X. Huang, B.-B. Guo, L.-J. Xu, J. Chen,
W.-G. Cao, G. Zhao and X.-Y. Wu, Org. Lett., 2014, 16, 5584;
(b) W. Shao, H. Li, C. Liu, C.-J. Liu and S.-L. You, Angew.
Chem., Int. Ed., 2015, 54, 7684.
6 D.-Y. Zhang, F.-L. Zhu, Y.-H. Wang, X.-H. Hu, S. Chen,
C.-J. Hou and X.-P. Hu, Chem. Commun., 2014, 50, 14459.
7 For a singular example of a copper-catalyzed propargylic
alkylation of N,N-diethyl-1-cyclohexen-1-amine with 1-
phenyl-2-propynyl benzoate in 33% yield and with 10/1 dr
and 72% ee, see: (a) P. Fang and X.-L. Hou, Org. Lett., 2009,
11, 4612; for a singular example of a copper-catalyzed
decarboxylative propargylic alkylation of 1-phenylprop-2-yn-
1-yl 2-oxocyclohexanecarboxylate in 88% yield with 7/1 dr
and 86% ee, see: (b) F.-L. Zhu, Y. Zou, D.-Y. Zhang,
Y.-H. Wang, X.-H. Hu, S. Chen, J. Xu and X.-P. Hu, Angew.
Chem., Int. Ed., 2014, 53, 1410.
Conclusions
In conclusion, we have developed a highly diastereo- and
enantioselective copper-catalyzed propargylic alkylation of
propargylic acetates with morpholine-derived cyclic enamines
for the construction of two vicinal tertiary stereocenters. The
reaction was preferential to the formation of syn-diastereoiso-
mers of the propargylic alkylation products in the complete
chemoselectivity. By the employment of
a
chiral 1-
phenylethylamine-derived tridentate P,N,N-ligand, good to
excellent diastereoselectivity (>98 : 2) and enantioselectivity (up
to 99% ee) have been achieved for a wide range of substrates. In
comparison with the reaction of acyclic enamines, less sterically
hindered P,N,N-ligand showed better performance in the
propargylic alkylation of cyclic enamines in term of chemo-
selectivity, suggesting that its lower reactivity efficiently
supressed the last cyclization step. Further development and
application of this reaction are underway.
Acknowledgements
This work was nancially supported by the National Natural
Science Foundation of China (21572226, 21262011) and the
Dalian Institute of Chemical Physics.
Notes and references
1 For reviews, see: (a) Y. Nishibayashi and S. Uemura, Curr. Org.
Chem., 2006, 10, 135; (b) N. Ljungdahl and N. Kann, Angew.
Chem., Int. Ed., 2009, 48, 642; (c) Y. Miyake, S. Uemura and
Y. Nishibayashi, ChemCatChem, 2009, 1, 342; (d) R. J. Detz,
H. Hiemstra and J. H. van Maarseveen, Eur. J. Org. Chem.,
2009, 6263; (e) O. Debleds, E. Gayon, E. Vrancken and
J.-M. Campagne, Beilstein J. Org. Chem., 2011, 7, 866; (f)
C.-H. Ding and X.-L. Hou, Chem. Rev., 2011, 111, 1914; (g)
E. B. Bauer, Synthesis, 2012, 44, 1131; (h) Y. Nishibayashi,
Synthesis, 2012, 44, 489; (i) D.-Y. Zhang and X.-P. Hu,
Tetrahedron Lett., 2015, 56, 283; (j) X.-H. Hu, Z.-T. Liu,
L. Shao and X.-P. Hu, Synthesis, 2015, 47, 913.
2 R. J. Detz, M. M. E. Delville, H. Hiemstra and J. H. van
Maarseveen, Angew. Chem., Int. Ed., 2008, 47, 3777.
3 G. Hattori, H. Matsuzawa, Y. Miyake and Y. Nishibayashi,
Angew. Chem., Int. Ed., 2008, 47, 3781.
4 (a) G. Hattori, A. Yoshida, Y. Miyake and Y. Nishibayashi, J.
Org. Chem., 2009, 74, 7603; (b) G. Hattori, K. Sakata,
8 C. Zhang, X.-H. Hu, Y.-H. Wang, Z. Zheng, J. Xu and X.-P. Hu,
J. Am. Chem. Soc., 2012, 134, 9585.
9 CCDC 1439964 for (S,R)-3r †.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 14763–14767 | 14767