ChemComm
Communication
Table 2 Electrophilic functionalisation of select heteroarenes
proton transfer to another molecule of N-TIPS-indole, as observed
in electrophilic borylations,17 and finally reduction to N-TIPS-
indoline by hydride transfer (Scheme 3).
In conclusion, R3Si–H–B(C6F5)3, I, still forms in the presence of
activated heteroarenes, which for the first time are shown to be
viable nucleophiles towards I. Catalytic silylation pathways are
demonstrated, but the competitive activation of Si–H and H–H
bonds by boron Lewis acids/weak nucleophiles leads to multiple
products. Furthermore, the formation of aliphatic R2S species from
thiophene hydrosilylation/hydrogenation inhibits catalyst turnover
by coordination to B(C6F5)3. Finally, the hydrogenation of both 2-MT
and N-TIPS-indole with only B(C6F5)3/H2 confirms both these hetero-
arenes are carbon nucleophiles capable of activating H2 in a FLP.
This suggests that many other arenes will be viable as carbon
nucleophiles for H2 cleavage in a FLP.
B(C6F5)3/
Cl2-py
Y–H (mol%) t (h)
Sila-FCa Reda
Entry Substrate
T (1C) (%)
(%)
1
2
3
4
5
6
7
8
9
2-BT
2-BT
Si–H 100/100 18
Si–H 5/5
N-TIPS pyrrole Si–H 100/100 48
N-TIPS-indole Si–H 100/100 24
N-TIPS-indole H–H 100/100 16
20
60
20
20
20
20
20
20
54
70
42
59
—
—
30
—
32
17
45
24
19b
80b
80c
21b
16b
35b
2-BT
H–H 100/100 24
N-TIPS-indole Si–H 100/0
N-TIPS-indole H–H 100/0
N-TIPS-indole H–H 100/0
24
24
24 + 24 20 + 60 —
We thank the Royal Society (M. J. I.), the Leverhulme Trust
(E. R. C), the European Research Council under FP7 (J. J. D.)
and the University of Manchester (L. D. C.) for support.
a
Conversion by consumption of the substrate and growth of products as
determined by 1H NMR spectroscopy, unreacted starting material also
b
present. Combined conversion to the indoline and protonated indoline.
c
Acid induced tBu migration results in multiple reduction products.
Notes and references
1 W. E. Piers, A. J. V. Marwitz and L. G. Mercier, Inorg. Chem., 2011,
50, 12252.
2 G. Erker and D. W. Stephan, Frustrated Lewis Pairs, Uncovering and
Understanding, Springer-Verlag, Berlin, 2013.
concomitant hydrogenation (Table 2, entries 1 and 2). Electrophilic
silylation via I could be extended to 5-membered N-heterocycles. Whilst
N-TIPS protected pyrrole and indole were amenable to silylation,
hydrogenation was again competitive (entries 3 and 4), although
no hydrosilylation was observed in either case. Hydrogenation
products were confirmed by independent reduction under 4 atm. H2
(e.g., entry 5). Catalytic (in B(C6F5)3) reductions were limited as (i) the
hydrogenation of N-TIPS-indole produces a better Brønsted base,
N-TIPS-indoline, that cleaves H2 with B(C6F5)3 to form [N-H-N-TIPS-
indolinium][HB(C6F5)3] thus sequestering B(C6F5)3 and preventing turn-
over, (ii) the catalytic hydrogenation of tBu-thiophene was retarded by
coordination of 2-tBu-tetrahydrothiophene to B(C6F5)3 (entry 6).12
The dehydrosilylation of N-TIPS-indole without Cl2-py led to
increased proportions of the reduction product, N-TIPS-indoline,
(entry 7 vs. 4) analogous to 2-MT reactivity. Furthermore, in the
absence of Cl2-py the FLP hydrogenation of N-TIPS-indole with
B(C6F5)3 also proceeds confirming that N-TIPS indole is also a viable
carbon nucleophile for FLP H2 activation (entries 8 and 9).12 It is
noteworthy that there is less reduction of N-TIPS-indole at 20 1C
under H2 than there is during silylation (entry 7 vs. 8) thus another
reduction mechanism must be operating in silylation. Reduction
presumably proceeds by silylation of N-TIPS-indole followed by
3 (a) D. J. Parks and W. E. Piers, J. Am. Chem. Soc., 1996, 118, 9440; (b) D. J.
Parks, J. M. Blackwell and W. E. Piers, J. Org. Chem., 2000, 65, 3090.
4 For select examples with O nucleophiles: (a) J. M. Blackwell,
K. L. Foster, V. H. Beck and W. E. Piers, J. Org. Chem., 1999,
64, 4887; (b) S. Rubinsztajin and J. A. Cella, Macromolecules, 2005,
38, 1061. N nucleophiles: (c) J. M. Blackwell, E. R. Sonmor,
T. Scoccitti and W. E. Piers, Org. Lett., 2000, 2, 3921. S nucleophiles:
(d) D. J. Harrison, D. R. Edwards, R. McDonald and L. Rosenberg,
Dalton Trans., 2008, 3401. For alkene silylation: (e) M. Rubin,
T. Schwier and V. Gevorgyan, J. Org. Chem., 2002, 67, 1936;
( f ) S. Chandrasekhar, G. Chandrashekar, M. S. Reddy and
P. Srihari, Org. Biomol. Chem., 2006, 4, 1650; (g) A. Simonneau and
M. Oestreich, Angew. Chem., Int. Ed., 2013, 52, 11905.
5 C. D. F. Koenigs, H. F. T. Klare, Y. Ohki, K. Tatsumi and
M. Oestreich, Org. Lett., 2012, 14, 2842.
6 Whilst this work was under review the mechanistic complexity of
imine hydrosilylation with I was reported. J. Hermeke, M. Mewald
and M. Oestreich, J. Am. Chem. Soc., 2013, 135, 17537.
7 H. F. T. Klare, M. Oestreich, J. Ito, H. Nishiyama, Y. Ohki and
K. Tatsumi, J. Am. Chem. Soc., 2011, 133, 3312.
8 R. K. Schmidt, K. Muether, C. Mueck-Lichtenfeld, S. Grimme and
M. Oestreich, J. Am. Chem. Soc., 2012, 134, 4421.
9 S. Furukawa, J. Kobayashi and T. Kawashima, J. Am. Chem. Soc.,
2009, 131, 14192.
10 F. Focante, P. Mercandelli, A. Sironi and L. Resconi, Coord. Chem.
Rev., 2006, 250, 170.
11 For relative nucleophilicities see: (a) M. Horn, L. H. Schappele, G. Lang-
Wittowski, H. Mayr and A. R. Ofial, Chem.–Eur. J., 2013, 19, 249;
(b) H. Mayr, B. Kempf and A. R. Ofial, Acc. Chem. Res., 2003, 36, 66.
12 See ESI†.
13 L. Greb, P. Ona-Burgos, B. Schirmer, S. Grimme, D. W. Stephan and
J. Paradies, Angew. Chem., Int. Ed., 2012, 51, 10164.
14 T. Mahdi, Z. M. Heiden, S. Grimme and D. W. Stephan, J. Am. Chem.
Soc., 2012, 134, 4088.
15 (a) M. P. Boone and D. W. Stephan, J. Am. Chem. Soc., 2013, 135, 8508;
(b) E. R. Clark and M. J. Ingleson, Organometallics, 2013, 32, 6712,
DOI: 10.1021/om400463r.
16 (a) Y. Segawa and D. W. Stephan, Chem. Commun., 2012, 48, 11963;
(b) L. J. Hounjet, C. Bannworth, C. N. Garon, C. B. Caputo, S. Grimme
and D. W. Stephan, Angew. Chem., Int. Ed., 2013, 52, 7492.
17 V. Bagutski, A. Del Grosso, J. A. Carrillo, I. A. Cade, M. D. Helm,
J. R. Lawson, P. J. Singleton, S. A. Solomon, T. Marcelli and
M. J. Ingleson, J. Am. Chem. Soc., 2013, 135, 474.
Scheme 3 Reduction of N-TIPS-indole by competing mechanisms.
5272 | Chem. Commun., 2014, 50, 5270--5272
This journal is ©The Royal Society of Chemistry 2014