Journal of Medicinal Chemistry
Brief Article
HT(6) receptor antagonist [(125)I]SB-258585. Brain Res. 2002, 934,
49−57.
design and selection parameters to accelerate the discovery process of
novel CNS PET ligands and their application in the identification of a
potential 5HT6 PET ligand [11C]PF-1. J. Labelled Compd. Radiopharm.
2011, 54, S292.
(25) Rosse, G. Quinoline derivatives as 5-HT6 receptor PET ligands.
ACS Med. Chem. Lett. 2014, 5, 275−276.
(26) Black, L. A. Radiolabeled 5-HT6 ligands. US20130343993A1,
2013.
(27) Tang, S.; Verdurand, M.; Joseph, B.; Lemoine, L.; Daoust, A.;
Billard, T.; Fournet, G.; Le Bars, D.; Zimmer, L. Synthesis and
biological evaluation in rat and cat of [18F]12ST05 as a potential 5-
HT6 PET radioligand. Nucl. Med. Biol. 2007, 34, 995−1002.
(28) Bojarski, A. J. Pharmacophore models for metabotropic 5-HT
receptor ligands. Curr. Top. Med. Chem. 2006, 6, 2005−2026.
(29) Ahmed, M.; Johnson, C. N.; Jones, M. C.; MacDonald, G. J.;
Moss, S. F.; Thompson, M.; Wade, C. E.; Witty, D. Preparation of
arylsulfonyl(diazacycloalkyl)quinolines for treatment of CNS disor-
ders. WO2003080580A2, 2003.
(30) Barillari, C.; Brown, N. Classical Bioisosteres. In Bioisosteres in
Medicinal Chemistry; Brown, N., Ed.; Wiley: Weinheim, Germany,
2012; pp 15−29.
(31) Suzuki, H.; Abe, H. Copper-assisted displacement reaction of
nonactivated lodoarenes with arenesulfinates. Convenient alternative
synthesis of unsymmetrical diaryl sulfones. Tetrahedron Lett. 1995, 36,
6239−6242.
(32) Baskin, J. M.; Wang, Z. An efficient copper catalyst for the
formation of sulfones from sulfinic acid salts and aryl iodides. Org. Lett.
2002, 4, 4423−4425.
(33) Zhu, W.; Ma, D. Synthesis of aryl sulfones via l-proline-
promoted CuI-catalyzed coupling reaction of aryl halides with sulfinic
acid salts. J. Org. Chem. 2005, 70, 2696−2700.
(34) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M. An efficient
palladium-catalyzed synthesis of unsymmetrical diaryl sulfones from
aryl bromides/triflates and arenesulfinates. Synlett 2003, 2003, 361−
364.
(35) Colomb, J.; Billard, T. Palladium-catalyzed desulfitative arylation
of 3-haloquinolines with arylsulfinates. Tetrahedron Lett. 2013, 54,
1471−1474.
(36) Sperotto, E.; van Klink, G. P. M.; de Vries, J. G.; van Koten, G.
Ligand-free copper-catalyzed C−S coupling of aryl iodides and thiols.
J. Org. Chem. 2008, 73, 5625−5628.
(37) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. A highly active catalyst
for palladium-catalyzed cross-coupling reactions: room-temperature
Suzuki couplings and amination of unactivated aryl chlorides. J. Am.
Chem. Soc. 1998, 120, 9722−9723.
(38) Shen, Q.; Ogata, T.; Hartwig, J. F. Highly reactive, general and
long-lived catalysts for palladium-catalyzed amination of heteroaryl and
aryl chlorides, bromides, and iodides: scope and structure−activity
relationships. J. Am. Chem. Soc. 2008, 130, 6586−6596.
(39) Mitchell, E. S.; Neumaier, J. F. 5-HT6 receptors: a novel target
for cognitive enhancement. Pharmacol. Ther. 2005, 108, 320−333.
(40) Clark, D. E. In silico prediction of blood−brain barrier
permeation. Drug Discovery Today 2003, 8, 927−933.
(41) Norinder, U.; Haeberlein, M. Computational approaches to the
prediction of the blood-brain distribution. Adv. Drug Delivery Rev.
2002, 54, 291−313.
(6) East, S. Z.; Burnet, P. W.; Leslie, R. A.; Roberts, J. C.; Harrison, P.
J. 5-HT6 receptor binding sites in schizophrenia and following
antipsychotic drug administration: autoradiographic studies with
[
125I]SB-258585. Synapse 2002, 45, 191−199.
(7) Holenz, J.; Pauwels, P. J.; Díaz, J. L.; Merce,
̀
R.; Codony, X.;
Buschmann, H. Medicinal chemistry strategies to 5-HT6 receptor
ligands as potential cognitive enhancers and antiobesity agents. Drug
Discovery Today 2006, 11, 283−299.
(8) Marazziti, D.; Baroni, S.; Borsini, F.; Picchetti, M.; Vatteroni, E.;
Falaschi, V.; Catena-Dell’Osso, M. Serotonin receptors of type 6 (5-
HT6): from neuroscience to clinical pharmacology. Curr. Med. Chem.
2013, 20, 371−377.
(9) Heckl, S.; Pipkorn, R.; Nagele, T.; Vogel, U.; Kuker, W.; Voight,
K. Molecular imaging: bridging the gap between neuroradiology and
neurohistology. Histol. Histopathol. 2004, 19, 651−668.
(10) Lancelot, S.; Zimmer, L. Small-animal positron emission
tomography as a tool for neuropharmacology. Trends Pharmacol. Sci.
2010, 31, 411−417.
(11) Zimmer, L.; Luxen, A. PET radiotracers for molecular imaging
in the brain: past, present and future. Neuroimage 2012, 61, 363−370.
(12) Lee, C. M.; Farde, L. Using positron emission tomography to
facilitate CNS drug development. Trends Pharmacol. Sci. 2006, 27,
310−316.
(13) Kim, H. J.; Doddareddy, M. R.; Choo, H.; Cho, Y. S.; No, K. T.;
Park, W. K.; Pae, A. N. New serotonin 5-HT6 ligands from common
feature pharmacophore hypotheses. J. Chem. Inf. Model. 2008, 48,
197−206.
(14) Shireman, B. T.; Bonaventure, P.; Carruthers, N. I. Recent
advances on the 5-HT5A, 5-HT6 and 5-HT7 receptors. Annu. Rep.
Med. Chem. 2008, 43, 25−42.
(15) Glennon, R. A. Higher-end serotonin receptors: 5-HT5, 5-HT6,
and 5-HT7. J. Med. Chem. 2003, 46, 2795−2812.
(16) Ivachtchenko, A. V.; Ivanenkov, Y. A. Small molecule 5-HT6R
ligands: a comprehensive insight into their selectivity and activity.
Curr. Bioact. Compd. 2013, 9, 64−100.
(17) Vaz
Fernandez de la Pradilla, R.; Junquera, E.; Aicart, E.; Lop
M. L.; Ortega-Gutierrez, S. Development of molecular probes for the
́ ́
́
quez-Villa, H.; Gonzalez-Vera, J. A.; Benhamu, B.; Viso, A.;
́
́
ez-Rodríguez,
́
human 5-HT6 receptor. J. Med. Chem. 2010, 53, 7095−7106.
(18) Johnson, C. N.; Moss, S. F.; Witty, D. R. Preparation of
piperazinyl-quinoline derivatives useful for the treatment of CNS
disorders. WO2005030724A1, 2005.
(19) Gee, A. D.; Martarello, L.; Johnson, C. N.; Witty, D. R.
Preparation of isotopomeric piperazine-containing ligands labeling and
diagnostic imaging of 5-HT6 receptors. WO2006053785A1, 2006.
(20) Martarello, L.; Ahmed, M.; Chuang, A. T.; Cunningham, V. J.;
Jakobsen, S.; Johnson, C. N.; Matthews, J. C.; Medhurst, A.; Moss, S.
F.; Rabiner, E. A.; Ray, A.; Rivers, D.; Stemp, G.; Gee, A. D.
Radiolabelling and in vivo evaluation of [11C]GSK215083 as a
potential 5-HT6 pet radioligand in the porcine brain. J. Labelled
Compd. Radiopharm. 2005, 48, S7.
(21) Ward, R. P.; Dorsa, D. M. Colocalization of serotonin receptor
subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat
striatum. J. Comp. Neurol. 1996, 370, 405−414.
(22) Parker, C. A.; Gunn, R. N.; Rabiner, E. A.; Slifstein, M.; Comley,
R.; Salinas, C.; Johnson, C. N.; Jakobsen, S.; Houle, S.; Laruelle, M.;
Cunningham, V. J.; Martarello, L. Radiosynthesis and characterization
of 11C-GSK215083 as a PET radioligand for the 5-HT6 receptor. J.
Nucl. Med. 2012, 53, 295−303.
(23) Liu, F.; Majo, V. J.; Prabhakaran, J.; Milak, M. S.; John Mann, J.;
Parsey, R. V.; Kumar, J. S. Synthesis and in vivo evaluation of [O-
methyl-11C] N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-
piperazinyl)benzenesulfonamide as an imaging probe for 5-HT6
receptors. Bioorg. Med. Chem. 2011, 19, 5255−5259.
(24) Zhang, L.; Villalobos, A.; Anderson, D.; Beck, E.; Blumberg, L.;
Bocan, T.; Bronk, B.; Chen, L.; Brown-Proctor, C.; Grimwood, S.;
Heck, S.; Skaddan, M.; McCarthy, T.; Zasadny, K. Development of
(42) Kelder, J.; Grootenhuis, P. D. J.; Bayada, D. M.; Delbressine, L.
P. C.; Ploemen, J.-P. Polar molecular surface as a dominating
determinant for oral absorption and brain penetration of drugs. Pharm.
Res. 1999, 16, 1514−1519.
(43) Andries, J.; Lemoine, L.; Le Bars, D.; Zimmer, L.; Billard, T.
Synthesis and biological evaluation of potential 5-HT7 receptor PET
radiotracers. Eur. J. Med. Chem. 2011, 46, 3455−3461.
(44) Le Bars, D. Fluorine-18 and medical imaging: radiopharmaceu-
ticals for positron emission tomography. J. Fluorine Chem. 2006, 127,
1488−1493.
(45) Le Bars, D.; Lemaire, C.; Ginovart, N.; Plenevaux, A.; Aerts, J.;
Brihaye, C.; Hassoun, W.; Leviel, V.; Mekhsian, P.; Weissmann, D.;
Pujol, J. F.; Luxen, A.; Comar, D. High-yield radiosynthesis and
3889
dx.doi.org/10.1021/jm500372e | J. Med. Chem. 2014, 57, 3884−3890