Page 3 of 3
ChemComm
DOI: 10.1039/C3CC47888B
methylated Lhpz2 catalyst is somewhat more active than Lpy1 and 55 intermediate position (Table 1). There seems to be a clear
the unsubstituted Lhpz1 catalyst almost as active as Lbzm1. To
explain this trend we suggest that electronꢀrich Nꢀdonor ligands
promote the hydroxylation reaction by making the peroxo
intermediate less stable (Scheme 4, compound 3); i.e. the least
reactive pyridineꢀbased system would form the most stable
peroxo intermediate whereas the stability of the peroxo
intermediate is decreased for the more reactive benzimidazoleꢀ or
pyrazole based catalysts. In fact, we succeeded in observing the
10 peroxo adduct for the Lpy1 complex at low temperatures, in
contrast to the latter systems (cf Supp.Mat.). A second possible
influence on the reaction rate emerges from the twoꢀelectron
oxidation of the catecholate adduct 4, leading to the quinone.
correlation between TON and TOF; i.e., the faster the catalytic
reaction, the higher is the product yield. We assume that a higher
rate counteracts side reactions which destroy the catalyst, thus
leading to a higher catalytic performance.
5
60 Acknowledgements
The authors would like to thank Deutsche Forschungsꢀ
gemeinschaft (DFG), COST and CAU Kiel for financial support
as well as Holger Naggert for support with the measurements.
Notes and references
65 a Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel,
Germany. Fax: +0049 (0)431 1520; Tel: +0049 (0)431 1410; E-mail:
† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See
70 DOI: 10.1039/b000000x/
15
20
25
30
1
M. Rolff, J. Schottenheim, H. Decker, F. Tuczek, Chem. Soc. Rev.
2011, 40, 4077.
2
A. W. J. W. Tepper, E. Lonardi, L. Bubacco, G. W. Canters, in
Handbook of Metalloproteins (Ed.: A. Messerschmidt), John Wiley,
Chichester, 2010.
75
80
3
Á. SánchezꢀFerrer, J. N. RodríguezꢀLópez, F. GarcíaꢀCánovas, F.
GarcíaꢀCarmona, Biochim. Biophys. Acta, Prot. Struct. Mol. Enzym.
1995, 1247, 1.
K. E. van Holde, K. I. Miller, H. Decker, Journal of Biological
Chemistry 2001, 276, 15563.
Y. Matoba, T. Kumagai, A. Yamamoto, H. Yoshitsu, M. Sugiyama,
J. Biol. Chem. 2006, 281, 8981.
H. Decker, T. Schweikardt, F. Tuczek, Angew. Chem. Int. Ed. 2006,
45, 4546.
a) Y. C. Li, Y. Wang, H. B. Jiang, J. P. Deng, Proc. Natl. Acad. Sci.
USA 2009, 106, 17002¸ b) M. Sendovski, M. Kanteev, V. S. Benꢀ
Yosef, N. Adir, A. Fishman, J. Mol. Biol. 2011, 405, 227; c) W. T.
Ismaya, H. J. Rozeboom, A. Weijn, J. J. Mes, F. Fusetti, H. J.
Wichers, B.W. Dijkstra, Biochemistry 2011, 50, 5477.
K. Selmeczi, M. Réglier, G. Michel, G. Speier, Coord. Chem. Rev.,
2003, 245, 191.
4
5
6
7
85
Scheme 4. Proposed catalytic cycle for investigated systems Lhpz
and Lhpz2 in analogy to model systems Lpy1 and Lbzm1.11,21
1
With respect to the system without substituted pyrazole (Lhpz1;
35 TON = 29), the TON decreases to 23 for the Lhpz2 system. In
agreement with the above considerations we attribute this effect
to (i) an increased stabilization of the peroxo adduct and (ii) an
increased steric hindrance with respect to coordinate of the
substrate (phenol) to the peroxo intermediate (Scheme 4).
90
8
9
I. A. Koval, P. Gamez, C. Belle, K. Selmeczi, J. Reedijk, Chem. Soc.
Rev. 2006, 35, 814.
10 C. Eicken, C. Gerdemann, B. Krebs, in Handbook of Metalloproteins,
Vol. 2 (Eds.: A. Messerschmidt, R. Huber, T. Poulos, K. Wieghardt),
J. Wiley & Sons, Chichester, UK, 2001, pp. 1319.
11 M. Rolff, J. Schottenheim, G. Peters, F. Tuczek, Angew. Chem. Int.
Ed. 2010, 49, 6438.
95
40 Conclusion
12 a) K. D. Karlin, S. Kaderli, A. D. Zuberbühler, Acc. Chem. Res. 1997,
30, 139; b) M. Rolff, J. N. Hamann, F. Tuczek, Angew. Chem. Int.
Ed. 2011, 50, 6924.
13 E. A. Lewis, W. B. Tolman, Chem. Rev. 2004, 104, 1047.
14 L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev. 2004, 104,
1013.
Two new mononuclear copper(I) complexes containing ligands
with pyrazole groups were synthesized as model systems of the
enzyme tyrosinase and investigated regarding the conversion of
the external substrate DTBPꢀH to DTBQ, using UV/Vis and
45 NMR spectroscopy. Importantly, the Lhpz1 system (TON = 29)
was found to be more reactive than its Lhpz2 counterpart
(TON = 23; Table1)
100
105 15 A. De, S. Mandal, R. Mukherjee, J. Inorg. Biochem. 2008, 102, 1170.
16 K. D. Karlin, J. C. Hayes, Y. Gultneh, R. W. Cruse, J. W. Mckown, J.
P. Hutchinson, J. Zubieta, J. Am. Chem. Soc. 1984, 106, 2121.
17 L. Casella, M. Gullotti, M. Bartosek, G. Pallanza, E. Laurenti,
J. Chem. Soc., Chem. Commun. 1991, 1235.
system
TON
Lpy1
22
Lhpz
23
2
Lhpz
29
1
Lbzm
1
110 18 M. Réglier, C. Jorand, B. Waegell, J. Chem. Soc., Chem. Comm.
1990, 1752.
31
TOF @15 min.
0.56
0.62
0.85
0.98
19 W. Flaig, Th. Ploetz, A. Küllmer, Z. Naturforschg., 1955, 10b, 668.
20 A. Hoffmann, C. Citek, S. Binder, A. Goos, M. Rübhausen, O.
Troeppner, I. IvanovićꢀBurmazović, E.C. Wasinger, T. D. P. Stack, S.
HerresꢀPawlis, Angew. Chem. Int. Ed. 2013, 52, 5398.
21 J. Schottenheim, N. Fateeva, W. Thimm, J. Krahmer, F. Tuczek, Z.
Anorg. Allg. Chem. 2013, 639, 1491.
Table 1. All mononuclear tyrosinase model systems, ordered by
50 TON for the conversion of DTBPꢀH to DTBQ at ambient
temperature; grey marked new systems.11,21
115
In comparison with the model systems Lbmz1 (TON = 31) and
Lpy1 (TON = 22) published earlier, the new systems have an
22 K. Kenji, JP patent 2010-215610, 2010.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3