Journal of the American Chemical Society
Communication
(2) Giles, G. I.; Jacob, C. Biol. Chem. 2002, 383, 375.
(3) Giles, G. I.; Tasker, K. M.; Jacob, C. Free Radical Biol. Med. 2001,
31, 1279.
(4) Li, L.; Rose, P.; Moore, P. K. Annu. Rev. Pharmacol. Toxicol. 2011,
51, 169.
(5) Wang, R. Physiol. Rev. 2012, 92, 791.
(6) Fukuto, J. M.; Carrington, S. J.; Tantillo, D. J.; Harrison, J. G.;
Ignarro, L. J.; Freeman, B. A.; Chen, A.; Wink, D. A. Chem. Res. Toxicol.
2012, 25, 769.
́
(7) Szabo, C. Nat. Rev. Drug Discovery 2007, 6, 917.
(8) Mustafa, A. K.; Gadalla, M. M.; Sen, N.; Kim, S.; Mu, W.; Gazi, S.
K.; Barrow, R. K.; Yang, G.; Wang, R.; Snyder, S. H. Sci. Signal. 2009, 2,
ra72.
(9) Sen, N.; Paul, B. D.; Gadalla, M. M.; Mustafa, A. K.; Sen, T.; Xu, R.;
Kim, S.; Snyder, S. H. Mol. Cell 2012, 45, 13.
Figure 6. Confocal fluorescence images of H2Sn in HeLa cells. Cells on
glass coverslips were incubated with DSP-3 (10 μM) for 20 min, then
washed, and subjected to different treatments. (a) control (no Na2S2);
cells treated with (b) 100 μM Na2S2 and (c) 100 μM Na2S. Second row
shows the corresponding differential interference contrast images for the
first row.
(10) Yang, G.; Zhao, K.; Ju, Y.; Mani, S.; Cao, Q.; Puukila, S.; Khaper,
N.; Wu, L.; Wang, R. Antioxid. Redox Signal. 2013, 15, 1906.
(11) Krishnan, N.; Fu, C.; Pappin, D. J.; Tonks, N. K. Sci. Signal. 2011,
4, ra86.
(12) Paulsen, C. E.; Carroll, K. S. Chem. Rev. 2013, 113, 4633.
(13) Zhang, D.; Macinkovic, I.; Devarie-Baez, N. O.; Pan, J.; Park, C.-
M.; Carroll, K. S.; Filipovic, M. R.; Xian, M. Angew. Chem., Int. Ed. 2014,
53, 575.
(14) Nagy, P.; Palinkas, Z.; Nagy, A.; Budai, B.; Toth, I.; Vasas, A.
́ ́ ́
Biochim. Biophys. Acta 2014, 1840, 876.
(15) Kimura, H. Neurochem. Int. 2013, 63, 492.
(16) Kabil, O.; Motl, N.; Banerjee, R. Biochim. Biophys. Acta 2014,
DOI: 10.1016/j.bbapap.2014.01.002.
first incubated with DSP-3 (10 μM) for 20 min, and no
fluorescence was observed. Strong fluorescence in the cells was
induced after treating with Na2S2 (100 μM). In comparison, cells
treated with H2S (using 100 μM Na2S) did not show obvious
fluorescence. In addition, the cell viability assay demonstrated
that DSP-3 has almost no cytotoxicity (Figure S4). These results
suggest that DSP-3 is cell permeable and can be used in detecting
H2Sn (not H2S) in cells.
(17) Kimura, H. Nitric Oxide 2014, DOI: 10.1016/j.niox.2014.01.002.
(18) Kimura, Y.; Mikami, Y.; Osumi, K.; Tsugane, M.; Oka, J.; Kimura,
H. FASEB J. 2013, 27, 2451.
In summary, we report in this study a H2Sn/H2S2-mediated
benzodithiolone formation under mild conditions. This reaction
proves to be specific for H2Sn/H2S2 over other RSS such as
biothiols and H2S. Based on this reaction, a fluorescent probe,
DSP-3, was developed for sensitive and selective detection of
H2Sn/H2S2 in aqueous buffers as well as in cells. With probe
DSP-3, we also confirm the possibility of H2Sn formation from
the reaction of H2S with ROS such as ClO−. We are now utilizing
these probes to study the contributions of hydrogen polysulfides
to physiological and pathological processes. It should be noted
that more sensitive fluorescent probes for endogenous hydrogen
polysulfides may be needed, and our present design approach
should lead to the development of such probes by using more
strongly luminescent fluorochrome.
(19) Koike, S.; Ogasawara, Y.; Shibuya, N.; Kimura, H.; Ishii, K. FEBS
Lett. 2013, 587, 3548.
(20) Greiner, R.; Palinkas, Z.; Basell, K.; Becher, D.; Antelmann, H.;
́
́
̈
Nagy, P.; Dick, T. P. Antioxid. Redox Signal. 2013, 19, 1749.
(21) Li, X.; Gao, X.; Shi, W.; Ma, H. Chem. Rev. 2014, 114, 590.
(22) Lee, M. H.; Yang, Z.; Lim, C. W.; Lee, Y. H.; Dongbang, S.; Kang,
C.; Kim, J. S. Chem. Rev. 2013, 113, 5071.
(23) Chen, X.; Pradhan, T.; Wang, F.; Kim, J. S.; Yoon, J. Chem. Rev.
2012, 112, 1910.
(24) Jung, H. S.; Chen, X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2013, 42,
6019.
(25) Chen, W.; Liu, C.; Peng, B.; Zhao, Y.; Pacheco, A.; Xian, M. Chem.
Sci. 2013, 4, 2892.
(26) Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.;
Whorton, A. R.; Xian, M. Angew. Chem., Int. Ed. 2011, 50, 10327.
(27) Peng, B.; Chen, W.; Liu, C.; Rosser, E. W.; Pacheco, A.; Zhao, Y.;
Aguilar, H. C.; Xian, M. Chem.Eur. J. 2014, 20, 1010.
(28) Yang, X.; Guo, Y.; Strongin, R. Angew. Chem., Int. Ed. 2011, 50,
10690.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data. This material is
■
S
(29) Toohey, J. I. Biochem. J. 1989, 264, 625.
(30) Chen, W.; Li, Z.; Shi, W.; Ma, H. Chem. Commun. 2012, 48, 2809.
(31) Li, Z.; Li, X.; Gao, X.; Zhang, Y.; Shi, W.; Ma, H. Anal. Chem. 2013,
85, 3926.
AUTHOR INFORMATION
Corresponding Author
■
(32) Nagy, P.; Winterbourn, C. C. Chem. Res. Toxicol. 2010, 23, 1541.
Author Contributions
§These authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work is supported by NIH (R01HL116571) and the ACS-
Teva U.S.A. Scholar Grant.
■
REFERENCES
■
(1) Gruhlke, M. C. H.; Slusarenko, A. J. Plant Physiol. Biochem. 2012,
59, 98.
7260
dx.doi.org/10.1021/ja502968x | J. Am. Chem. Soc. 2014, 136, 7257−7260