Journal of the American Chemical Society
Page 8 of 10
1
2
3
4
5
6
7
8
9
R. D.; Sato, K.; Morita, Y.; Toyota, K.; Shiomi, D.; Kitagawa,
13 Zadrozny, J. M.;
man, D. E. A
Gallagher, A. T.;
Porous Array
Harris, T. D.;
of Clock
Freed-
Qubits.
M.; Hara, H.; Carl, P.; Höfer, P.; Takui, T. A Synthetic Two-Spin
Quantum Bit: G -Engineered Exchange-Coupled Biradical De-
signed for Controlled-NOT Gate Operations. Agnew. Chem. Int.
Ed. 2012, 51, 9860–9864. (f) Sato, K.; Nakazawa, S.; Rahimi, R.;
Ise, T.; Nishida, S.; Yoshino, T.; Mori, N.; Toyota, K.; Shiomi,
D.; Yakiyama, Y.; Morita, Y.; Kitagawa, M.; Nakasuji, K.; Naka-
hara, M.; Hara, H.; Cark, P.; Höfer, P.; Takui, T. Molecular elec-
tron-spin quantum computers and quantum information pro-
cessing: pulse-based electron magnetic resonance spin technology
applied to matter spin-qubits. J. Mater. Chem. 2009, 19, 3739-
3754. (g) McGuire, J.; Miras, H. N.; Donahue, J. P.; Richards, E.;
Sproules, S. Ligand Radicals as Modular Organic Electron Spin
Qubits. Chem. Eur. J. 2018, 24, 17598-17605.
J. Am. Chem. Soc. 2017, 139, 7089–7094.
14 T. Yamabayashi; M. Atzori; L. Tesi; G. Cosquer; F. San-
tanni; M.–E. Boulon; E. Morra; S. Benci; R. Torre; M. Chiesa
Scaling Up Electronic Spin Qubits into a Three–Dimensional
Metal–Organic Framework. J. Am. Chem. Soc. 2018, 140, 12090
–12101.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
15 (a) Faust, T. B.; D’Alessandro, D. M. Radicals in metal-organic
frameworks. RSC Adv. 2014, 4, 17498-17512. (b) Zwoliński, K.
M.; Chmielewski, M. J. Tempo-Appended Metal-Organic
Frameworks as Highly Active, Selective, and Mild Reusable Cat-
alysts for Mild Aerobic Oxidation of Alcohols. ACS Applied Ma-
terials & Interfaces 2017, 9, 33956-33967 (c) Souto, M.; Strutyn-
ski, K.; Melle-Franco, M.; Rocha, J. Electroactive Organic Build-
ing Blocks for the Chemical Design of Functional Porous Frame-
works (MOFs and COFs) in Electronics. Chem. Eur. J. 2020, 26,
10912-10935.
9
Howe, M. E.; Garcia-Garibay, M. A. The Roles of Intrinsic Barri-
ers and Crystal Fluidity on the Dynamics of Crystalline Molecular
Rotors and Molecular Machines. J. Org. Chem. 2019, 84, 9835-
9849.
10 Molecular rotation is currently being researched in a number of
areas to create organic and hybrid materials with tunable and con-
trollable properties: (a) Setaka, W.; Yamaguchi, K. Order-
Disorder Transition of Dipolar Rotor in a Crystalline Molecular
Gyrotop and Its Optical Change. J. Am. Chem. Soc. 2013, 135,
14560-14563. (b) Tsurunaga, M.; Inagaki, Y.; Momma, H.;
Kwon, E.; Yamaguchi, K.; Yoza, K.; Setaka, W. Dielectric Re-
laxation of Powdered Molecular Gyrotops Having a Thiophene
Dioxide-diyl as a Dipolar Rotor. Org. Lett. 2018, 20, 6934-6937.
(c) Hashimoto, H.; Inagaki, Y.; Momma, H.; Kwon, E.; Setaka,
W. Kinetic Stabilization of Carbazole Nitroxides by Inclusion in a
Macrocage and Their Electron Spin Resonance Characterization.
J. Org. Chem. 2019, 84, 11783-11789. (d) Masuda, T.; Arase, J.;
Inagaki, Y.; Kawahata, M.; Yamaguchi, K.; Ohhara, T.l Nakao,
A.; Momma, H.; Kwon, E.; Setaka, W. Molecular Gyrotops with
16 Vogelsberg, C. S.; Uribe–Romo, F. J.; Lipton, A. S.; Yang, S.;
Houk, K. N.; Brown, S. Ultrafast Rotation in an Amphidynamic
Crystalline Metal Organic Framework. PNAS, 2017, 114, 13613–
13618.
17 Vacek, J.; Michl, J. Molecular dynamics of a grid-mounted mo-
lecular dipolar rotor in a rotating electric field. Proc. Nat. Acad.
Sc. 2001, 98, 5481–5486.
18 DeLeeuw, S. W.; Solvaeson, D.; Ratner, M. A.; Michl, J. Molecu-
lar dipole chains: Excitations and dissipation. J. Phys. Chem. B.,
1998, 102, 3876–3885.
19 (a) Chiarelli, R.; Novakt, M. A.; Rassat, A.; Tholencet, J. L. A
Ferromagnetic Transition At 1.48 K in an Organic Nitroxide. Na-
ture 1993, 363, 147–149. (b) You, A.; Be, M. A. Y.; Ferromag-
netic and Antiferromagnetic Intermolecular Interactions of Organ-
ic Radicals, α– Nitronyl Nitroxides. II. J. Chem. Phys. 1989, 91,
2743.
a
Five-Membered Heteroaromatic Ring: Synthesis, Temper-
Dependent Orientation of Dipolar Rotors inside the Crystal and its
Birefringence Change. Cryst.Growth Des. 2016, 16, 4392-4401.
(e) Winston, E. B.; Lowell, P. J.; Vacek, J.; Chocholoušová, J.;
Michl, J.; Price, J. C. Dipolar molecular rotors in the metal-
organic framework crystal IRMOF-2. Phys. Chem. Chem. Phys.
2008, 10, 5188-5191. (f) Horinek, D.; Michl. J. Molecular Dy-
namics Simulation of an Electric Field Driven Dipolar Molecular
Rotor Attached to a Quartz Glass Surface. J. Am. Chem. Soc.
2003, 39, 11900-11910. (g) Vacek, J.; Michl, J. Molecular dy-
namics of a grid-mounted molecular dipolar rotor in a rotating
electric field. PNAS 2001, 98, 5481-5486. (h) Jin, M.; Yamamoto,
S.; Seki, T.; Ito, H.; Garcia-Garibay, M. A. Anisotropic Thermal
Expansion as the Source of Macroscopic and Molecular Scale
Motion in Phosphorescent Amphidynamic Crystals. Angew.
Chem. Int. Ed. 2019, 58, 18003-18010. (i) Colin-Molina, A.; Ka-
rothu, D. P.; Jellen, M. J.; Toscano, R. A.; Garcia-Garibay, M. A.;
Naumov, P.; Rodriguez-Molina, B. “Thermosalient Am-
phidynamic Molecular Machines: Motion at the Matter Molecular
and Macroscopic Scales. 2019, 1, 1033-1046.
20 Gauyacq, J. P. & Lorente, N. Extremely long–lived magnetic
excitations in supported Fe chains. Physical Review B, 2016, 94,
045420.
21 Li, L.; Matsuda, R.; Tanaka, I.; Sato, H.; Kanoo, P.; Jeon, H.J.;
Foo, M.W.; Wakamiya, A.; Murata, Y.; Kitagawa, S., A Crystal-
line Porous Coordination Polymer Decorated with Nitroxide Rad-
icals Catalyzes Aerobic Oxidation of Alcohols. J. Am. Chem. Soc.
2014, 136, 7543–7546
22 Bajpai, A.; Lusi, M.; Zaworotko, M. J. The role of weak interac-
tions in controlling the mode of interpenetration in hybrid ultra-
microporous materials. Chem. Commun., 2017, 53, 3978–3981 (b)
Vagin, S. I.; Ott, A. K.; Hoffmann, S. D.; Lanzinger, D.; Rieger,
B. Synthesis and Properties of (Triptycenedicarboxylato)Zinc Co-
ordination Networks. Chem. Eur. J. 2009, 15, 5845–5853.
23 Jiang, X.; Duan, H–B.; Kahn, S.; Garcia–Garibay, M.A. Diffu-
sion–Controlled Rotation of Triptycene in a Metal–Organic
Framework (MOF) Sheds Light on the Viscosity of MOF–
Confined Solvent. ACS Cent. Sci. 2016, 2, 608–613
11 (a) Graham, M. J.; Zadrozny, J. M.; Fataftah, M. S.; Freedman, D.
E. Forging Solid-State Qubit Design Principles in a Molecular
Furnace. Chem. Mater. 2017, 29, 1885-1897. (b) Urtizberea, A.;
Natividad, E.; Alonso, P. J.; Andrés, M. J.; Gascón, I.; Goldmann,
M.; Roubeau, O. A Porphyrin Spin Qubit and Its 2D Framework
Nanosheets. Adv. Funct. Mater. 2018, 28, 1801695.
24 Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.;
Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang,
Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H. Stable Metal – Organic
Frameworksꢀ: Design, Synthesis, and Applications. Adv. Mater.
2018, 30, 1–35.
12 Yu, C.–J.; Krzyaniak, M.; Fataftah, M. S.; Wasielewski, M. R.;
Freedman, D. E. A Concentrated Array of Copper Porphyrin
Candidate Qubits. Chem. Sci. 2019, 10, 1702–1708.
25 (a) Matsumoto, S.; Higashiyama, T.; Akutsu, H.; Nakatsuji, S. A
Functional Nitroxide Radical Displaying Unique Thermochrom-
ism and Magnetic Phase Transition. Angew. Chem. Int. Ed.,
8
ACS Paragon Plus Environment