(CH -9); c) DQ moiety: 4.54 (1Í, d, J = 10.8, Í-2), 5.05 (1Í, d, J = 10.8, Í-3), 6.22 (1Í, s, Í-8), 6.75 (2Í, s, Í-5ꢀ, 6ꢀ), 6.89
2
13
(1Í, s, Í-2ꢀ), 8.97 (2Í, br.s) – (3ꢀ-OH, 4ꢀ-OH), 11.50 (1Í, br.s, 7-OH), 12.60 (1Í, s, 5-OH). C NMR spectrum (100 MHz,
DMSO-d , ꢇ, ppm): a) piperidine moiety (C-3ꢈ and C-5ꢈ CH resonances were overlapped by the solvent resonance): 19.80,
6
2
27.08, methyls; 47.72 (C-4ꢈ), 66.77 (C-2ꢈ, 6ꢈ); b) 56.00, methylene (C-9); c) DQ moiety: 71.38 (C-3), 83.12 (C-2),
3
sp -hydridized C atoms of ring C; 94.61 (Ñ-8), 98.84 (Ñ-4à), 100.02 (Ñ-6), 115.30 (Ñ-2ꢀ, 5ꢀ), 119.24 (Ñ-6ꢀ), 127.64 (Ñ-1ꢀ), 145.00
2
(Ñ-3ꢀ), 145.83 (Ñ-4ꢀ), 162.11 (Ñ-8à), 162.58 (Ñ-5), 165.72 (Ñ-7), 198.10 (Ñ-4) , sp -hybridized C atoms.
2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-[(1-hydroxy-2,2,5,5-tetramethylpyrrolidin-3-
–5
yl)aminomethyl]chroman-4-one (3a) [18-20]. Reduction of 3. A solution of 3 (12.5 mg, 2.6 ꢂꢃ10 mol) in MeOH (0.9 mL)
was treated with activated Zn (76 mg) and NH Cl (7.6 mg) and stirred at ~25°C for 10 min. A voluminous precipitate formed
4
during the course of the reaction. It was separated from the solution and dried in vacuo to constant weight. The resulting solid
was treated with MeOD-d (0.5 mL). The solution was filtered under Ar into an ampul for recording NMR spectra.
4
PMR spectrum (400 MHz, MeOD-d , ꢇ, ppm, J/Hz): a) pyrrolidine moiety: 1.52 (3H, s), 1.59 (3H, s), 1.64 (3H, s), 1.65
4
(3H, s), methyl resonances; 2.32 (1H, m) and 2.87 (1H, m), CH –C4ꢈ methylene resonance; 3.99 (1H, t, J = 9.5), CH-3ꢈ
2
methine resonance; b) 4.35 (2H, m), CH -9 methylene resonance; c) DQ moiety: 4.62 (1Í, d, J = 11.5, ÑÍ-2), 5.02 (1Í, d,
2
J = 11.6, ÑÍ-3), 6.12 (1Í, s, ÑÍ-8), 6.86 (2Í, s, ÑÍ-5ꢀ, 6ꢀ), 6.09 (1Í, s, ÑÍ-2ꢀ).
2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-[(1-hydroxy-2,2,5,5-tetramethylpyrrolidin-3-
–5
ylmethyl)aminomethyl]chroman-4-one (4a) [22]. Reduction of 4. Compound 4 (10 mg, 2.1 ꢂꢃ10 mol) was dissolved in
EtOH (1 mL), saturated with HCl (pH 2), stirred for 40 min at ~25°C, dried in vacuo to constant weight, and dissolved in
DMSO-d (0.5 mL). PMR spectrum (400 MHz, DMSO-d , ꢇ, ppm): a) pyrrolidine moiety: 1.12 (3H, s), 1.33 (3H, s), 1.49
6
6
(3H, s), 1.52 (3H, s), methyl resonances; 1.98 (1H, br.m), 2.33 (1H, br.m), 2.54 (1H, br.m), CH -4ꢈ and CH-3ꢈ methylene and
2
methine resonances; b) 2.92 (1H, m) and 3.15 (1H, m), CH -10 methylene resonance; c) 4.00 (2H, m), CH -9 methylene
2
2
resonance; d) DQ moiety: 4.54 (1Í, d, J = 10.9, ÑÍ-2), 5.04 (1Í, d, J = 10.9, ÑÍ-3), 6.19 (1Í, s, ÑÍ-8), 6.75 (2Í, s, ÑÍ-5ꢀ,
ÑÍ-6ꢀ), 6.89 (1Í, s, ÑÍ-2ꢀ), 8.85 (1Í, br.s), 8.89 (1Í, br.s) – (Ñ3ꢀ-OH, C4ꢀ-OH); 11.54 (1Í, br.s, C7-OH), 12.58 (1Í, s,
13
C5-OH). C NMR spectrum (100 MHz, D O, ꢇ, ppm): a) pyrrolidine moiety: 21.96, 22.92, 28.33, 29.68, methyl resonances;
2
41.67, 42.32 (C-4ꢈ, C-3ꢈ), 74.15, 76.39 (C-2ꢈ, C-5ꢈ); b) 48.34 and 59.63, C-10 and C-9 methylene; c) DQ moiety: 73.83
3
(C-3), 85.39 (C-2), sp -hybridized C atoms of ring C; 97.16 (Ñ-8), 100.45 (Ñ-4à), 102.83 (Ñ-6), 117.6, 118.44 (Ñ-2ꢀ, Ñ-5ꢀ),
123.03 (Ñ-6ꢀ), 130.12 (Ñ-1ꢀ), 146.42 (Ñ-3ꢀ), 147.47 (Ñ-4ꢀ), 163.96 (Ñ-8à), 165.38 (Ñ-5), 167.22 (Ñ-7), 199.51 (Ñ-4),
2
sp -hybridized C atoms.
ACKNOWLEDGMENT
The work was supported financially by RFBR Grant No. 12-03-00718a and the Moscow Administration Program
(Contract No. 16/12-Gen-M). Spectral characteristics of the synthesized compounds were obtained at the Chemical Service,
CCU, SB, RAS.
REFERENCES
1.
2.
Q. M. Andersen, Flavonoids: Chemistry, Biochemistry and Applications, CRC Press, 2006, 1198 pp; E. Grotewold (ed.),
The Science of Flavonoids, Springer, Ohio, 2006, 273 pp; R. B. Keller (ed.), Flavonoids: Biosynthesis, Biological Effects
and Dietary Sources, Nova Science Pub. Inc., 2009, 347 pp.
J. Neuzil, M. Tomassetti, Y. Zhao, L. Dong, M. Birringer, X. Wang, P. Low, K. Wu, B. A. Salvatore, and S. J. Ralph,
Mol. Pharmacol., 71, 1185 (2007).
3.
4.
K. Shimizu, R. Kondo, K. Sakai, N. Takeda, T. Nagahata, and T. Oniki, Lipids, 36 (12), 1321 (2001).
E. Keihlmann and P. W. Slade, J. Nat. Prod., 66, 1562 (2003); E. E. Nifantev, M. S. Krymchak, M. P. Koroteev,
A. M. Koroteev, and T. S. Kukhareva, Zh. Obshch. Khim., 81 (1), 106 (2011).
5.
6.
E. Keihlmann and M. G. Szcepina, Cent. Eur. J. Chem., 9 (3), 492 (2011); E. E. Nifantyev, M. P. Koroteev,
G. Z. Kaziev, I. S. Zakharova, K. A. Lyssenko, L. N. Kuleshova, and M. Yu. Antipin, Tetrahedron Lett., 44, 6327 (2003).
I. Kubo, K. Nihei, and K. Shimizu, Bioorg. Med. Chem., 12, 5343 (2004).
264