10.1002/adsc.201900756
Advanced Synthesis & Catalysis
Ruchirawat, N. Thasana, Chem. − Asian. J. 2010, 5,
2113; c) L. Shen, N. Xie, B. Yang, Y. Hu, Y. Zhang,
Eur. J. Med. Chem. 2014, 85, 807; d) S. T. Handy, Y.
Zhang, H. Bregman, J. Org. Chem. 2004, 69, 2362; e)
Q. Li, J. Jiang, A. Fan, Y. Cui, Y. Jia, Org. Lett. 2011,
13, 312; f) W. Lin, S. Ma, Org. Chem. Front. 2017, 4,
958.
OBoc
-CO2
-tBuOH
+
EWG
Ar
Ar
Ar
+
tBuO
R
N
R
N
N
R
1
EWG
EWG
2
A
B
FeX2
FeX2
air
air
FeX3
FeX3
Ar
Ar
Ar
Ar
N
N
N
R
N
EWG
R
[3] a) H.-M. Huang, Y.-J. Li, Q. Ye, W.-B. Yu, L. Han, J.-
H. Jia, J.-R. Gao, J. Org. Chem. 2014, 79, 1084; b) C.
Vila, J. Lau, M. Rueping, Beilstein J. Org. Chem. 2014,
10, 1233; c) C. Yu, Y. Zhang, S. Zhang, H. Li, W.
Wang, Chem. Commun. 2011, 47, 1036; d) S. Su, J. A.
Porco. Jr, J. Am. Chem. Soc., 2007, 129, 7744; e) A.
Fujiya, M. Tanaka, E. Yamaguchi, N. Tada, A. Itoh, J.
Org. Chem. 2016, 81, 7262; f) S. Nekkanti, N. P.
Kumar, P. Sharma, A. Kamal, F. M. Nachtigall, O.
Forero-Doria, L. S. Santos, N. Shankaraiah, RSC Adv.
2016, 6, 2671.
R
R
EWG
EWG
EWG
3'
3''
3
C
Scheme 6. Plausible Mechanism.
Conclusion
In conclusion, we have developed a straightforward
FeCl3 promoted synthesis of dihydropyrrolo[2,1-
a]isoquinolines through formal (3
+
2)
cycloaddition/oxidative aromatization cascade of
dihydroisoquinoline with MBH carbonates. Various
dihydropyrrolo[2,1-a]isoquinolines can be prepared
from easily accessible material (up to 96% yield).
[4] a) M. Leonardi, M. Villacampa, J. C. Menéndez, J.
Org. Chem. 2017, 82, 2570; b) R. Chen, Y. Zhao, H.
Sun, Y. Shao, Y. Xu. M. Ma, L. Ma, X. Wan, J. Org.
Chem. 2017, 82, 9291.
Further
modification
of
the
obtained
dihydropyrrolo[2,1-a]isoquinolines were successful
through simple chemical transformations providing a
diverse range of natural product-like molecules.
Notably, the gram-scale reaction can be performed
successfully in good yield.
[5] a) Y.-Q. Zou, L.-Q. Lu, L. Fu, N.-J. Chang, J. Rong, J.-
R. Chen, W.-J. Xiao, Angew. Chem. Int. Ed. 2011, 50,
7171; b) L, Huang, J. Zhao, Chem. Commun. 2013, 49,
3751; c) S. Guo, H. Zhang, L. Huang, Z. Guo, G.
Xiong, J. Zhao, Chem. Commun. 2013, 49, 8689.
[6] a) D. Basavaiah, B. Lingaiah, G. C. Reddy, B. C. Sahu,
Eur. J. Org. Chem. 2016, 2398; b) D. Basavaiah, B.
Devendar, D. V. Lenin, T. Satyanarayana, Synlett.,
2009, 411.
Experimental Section
General procedure for the synthesis of compounds 3:
[7] a) K. B. Manjappa, J.-R. Syu, D.-Y. Yang, Org. Lett.
2016, 18, 332; b) Y. Yu, Y. Liu, A. Liu, H. Xie, H. Li,
W. Wang, Org. Biomol. Chem., 2016, 14, 7455; c) C.
Feng, Y. Yan, Z. Zhang, K. Xu, Z. Wang, Org. Biomol.
Chem., 2014, 12, 4837.
A mixture of dihydroisoquinoline imine 1 (0.2 mmol, 1.0
equiv), MBH carbonate 2 (0.3 mmol, 1.5 equiv) and FeCl3
(0.05 mmol, 0.25 equiv) in DMSO (0.5 mL) was stirred at
o
130 C for 4 h under air atmosphere. The mixture was
cooled to room temperature and diluted with DCM (3 mL).
The resulting solution was washed with water (1.0 mL x 3)
and dried with Na2SO4, then purified directly by a silica
gel flash chromatography (hexane/EtOAc) to afford
compound 3.
[8] a) H.-L. Cui, J.-F. Wang, H.-L. Zhou, X.-L. You, X.-J.
Jiang, Org. Biomol. Chem., 2017, 15, 3860; b) X. Tang,
Y.-J. Gao, H.-Q. Deng, J.-J. Lei, S.-W. Liu, L. Zhou, Y.
Shi, H. Liang, J. Qiao, L. Guo, B. Han, H.-L. Cui, Org.
Biomol. Chem., 2018, 16, 3362; c) S.-W. Liu, Y.-J. Gao,
Y. Shi, L. Zhou, X. Tang, H.-L. Cui, J. Org. Chem.,
2018, 83, 13754; d) X. Tang, M.-C. Yang, C. Ye, L.
Liu, H.-L. Zhou, X.-J. Jiang, X.-L. You, B. Han, H.-L.
Cui, Org. Chem. Front., 2017, 4, 2128.
Acknowledgements
We are grateful for the support provided for this study by the
National Science Foundation of China (21871035, 21502013).
We thank Prof. Yan-Kai Liu of Ocean University of China for
helpful suggestions on manuscript writing.
[9] a) T. M. V. D. Pinho e Melo, Eur. J. Org. Chem., 2006,
2873; b) D. Seidel, Acc. Chem. Res., 2015, 48, 317; c)
X. Xu, M. P. Doyle, Acc. Chem. Res., 2014, 47, 1396;
d) I, Coldham, R. Hufton, Chem. Rev., 2005, 105,
2765; e) N. De, E. J. Yoo, ACS Catal., 2018, 8, 48; f) O.
Anaç, F. Ş. Güngör, Tetrahedron, 2010, 66, 5931; g) M.
Nyerges, J. Tóth, P. W. Groundwater, Synlett, 2008, 9,
1269; h) N. A. Nedolya, B. A. Trofimov, Chem.
Heterocycl. Com., 2013, 49, 152; i) V. Nair, A. Deepthi,
D. Ashok, A. E. Raveendran, R. R. Paul, Tetrahedron,
2014, 70, 3085.
References
[1] a) H. Fan, J. Peng, M. T. Hamann, J.-F. Hu, Chem. Rev.
2008, 108, 264; b) D. Baunbæk, N. Trinkler, Y.
Ferandin, O. Lozach, P. Ploypradith, S. Rucirawat, F.
Ishibashi, M. Iwao, L. Meijer, Mar. Drugs. 2008, 6,
514.
[2] a) P. Ploypradith, C. Mahidol, P. Sahakitpichan, S.
Wongbundit, S. Ruchirawat, Angew. Chem. 2012, 116,
884; Angew. Chem. Int. Ed. 2004, 43, 866; b) S.
Boonya-udtayan, N. Yotapan, C. Woo, C. J. Bruns, S.
[10] a) A. A. O. Sarhan, C. Bolm, Chem. Soc. Rev. 2009,
38, 2730; b) C. Bolm, J. Legros, L. L. Paih, L. Zani,
5
This article is protected by copyright. All rights reserved.