Organic Letters
Letter
(3) Barbarella, G.; Favaretto, L.; Zambianchi, M.; Pudova, O.;
Arbizzani, C.; Bongini, A.; Mastragostino, M. Adv. Mater. 1998, 10,
551.
(4) Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Bongini,
A.; Arbizzani, C.; Mastragostino, M.; Anni, M.; Gigli, G.; Cingolani, R.
J. Am. Chem. Soc. 2000, 122, 11971.
(5) (a) Liu, J.; Hu, S.; Zhao, W.; Zou, Q.; Luo, W.; Yang, W.; Peng,
J.; Cao, Y. Macromol. Rapid Commun. 2010, 31, 496. (b) Liu, J.; Zou,
J.; Yang, W.; Wu, H.; Li, C.; Zhang, B.; Peng, J.; Cao, Y. Chem. Mater.
2008, 20, 4499. (c) Huang, T.-H.; Whang, W.-T.; Shen, J. Y.; Wen, Y.-
S.; Lin, J. T.; Ke, T.-H.; Chen, L.-Y.; Wu, C.-C. Adv. Funct. Mater.
2006, 16, 1449.
(6) Moss, K. C.; Bourdakos, K. N.; Bhalla, V.; Kamtekar, K. T.; Bryce,
M. R.; Fox, M. A.; Vaughan, H. L.; Dias, F. B.; Monkman, A. P. J. Org.
Chem. 2010, 75, 6771.
displayed single-exponential and triexponential behavior, while
both 23b and 23c exhibited biexponential behavior (Table 4).
The triexponential fluorescence lifetime decay of 20b may be
attributed to the different conformational isomers visualized
through the restricted rotation of thiophene units. However,
1
the VT H NMR spectra of 20b did not provide any evidence
for such conformational isomers (see the Supporting
Information). Further photophysical studies on 20b and
other structurally related compounds may provide a possible
reason for triexponential/biexponential behavior of these
compounds.
In summary, we have successfully exploited the Diels−Alder
reaction of benzo[c]furans with annulated thiophene S,S-
dioxides and indenones that provides a new method for the
preparation of π-conjugated thiophene S,S-dioxides and
fluorenones. Synthesis and photophysical properties of seven-
as well as nine-membered acenes and also the fluorescence
lifetime decay of selected thiophene S,S-dioxides have been
carried out. Further studies toward the synthesis and optical
application of thiophene S,S-dioxide-based hetero acenes are in
progress.
(7) (a) King, S. M.; Perepichka, I. I.; Perepichka, I. F.; Dias, F. B.;
Bryce, M. R.; Monkman, A. Adv. Funct. Mater. 2009, 19, 586. (b) Dias,
F. B.; Pollock, S.; Hedley, G.; Palsson, L.-O.; Monkman, A.;
̊
Perepichka, I. I.; Perepichka, I. F.; Tavasli, M.; Bryce, M. R. J. Phys.
Chem. B 2006, 110, 19329. (c) Perepichka, I. I.; Perepichka, I. F.;
Bryce, M. R.; Palsson, L.-O. Chem. Commun. 2005, 3397.
̊
(8) Xiao, H.; Miao, J.; Cao, J.; Yang, W.; Wu, H.; Cao, Y. Org.
Electron. 2014, 15, 758.
(9) (a) Marsitzky, D.; Mullen, K. In Advances in Synthetic Metals,
̈
Twenty Years of Progress in Science and Technology; Bernier, P., Lefrant,
S., Bidan, G., Eds.; Elsevier: New York, 1999; p 1. (b) Mullen, K.;
Wegner, G. Electronic Materials: The Oligomer Approach; Wiley-VCH:
Weinheim, 1998. (c) Akcelrud, L. Prog. Polym. Sci. 2003, 28, 875.
(10) (a) Liu, L.; Qiu, S.; Wang, B.; Zhang, W.; Lu, P.; Xie, Z.; Hanif,
M.; Ma, Y.; Shen, J. J. Phys. Chem. B 2005, 109, 23366. (b) List, E. J.
W.; Guentner, R.; Freitas, P. S. D.; Scherf, U. Adv. Mater. 2002, 14,
ASSOCIATED CONTENT
* Supporting Information
Experimental procedure, copies of NMR spectra, and X-ray
crystallographic data of 4a, 6a, and 16e (CIF). This material is
■
S
374. (c) Bliznyuk, V. N.; Carter, S. A.; Scott, J. C.; Klarner, G.; Miller,
R. D.; Miller, D. C. Macromolecules 1999, 32, 361.
(11) Cho, S. Y.; Grimsdale, A. C.; Jones, D. J.; Watkins, S. E.;
Holmes, A. B. J. Am. Chem. Soc. 2007, 129, 11910.
̈
AUTHOR INFORMATION
Corresponding Author
■
(12) Goel, A.; Chaurasia, S.; Dixit, M.; Kumar, V.; Prakash, S.; Jena,
B.; Verma, J. K.; Jain, M.; Anand, R. S.; Manoharan, S. S. Org. Lett.
2009, 11, 1289.
Notes
The authors declare no competing financial interest.
(13) Carruthers, W. Cycloaddition Reactions in Organic Synthesis;
Pergamon Press: New York, 1990.
ACKNOWLEDGMENTS
■
(14) (a) Wang, T.; Han, J.; Zhang, Z.; Xu, B.; Huang, J.; Su, J.
Tetrahedron 2012, 68, 10372. (b) Nishina, Y.; Kida, T.; Ureshino, T.
Org. Lett. 2011, 13, 3960. (c) Kuninobu, Y.; Seiki, T.; Kanamaru, S.;
Nishina, Y.; Takai, K. Org. Lett. 2010, 12, 5287. (d) Qu, H.; Chi, C.
Org. Lett. 2010, 12, 3360. (e) Klassen, S. A.; Boehme, R.; Derrick, S.
Financial assistance from DST, New Delhi, is acknowledged.
M.N. and J.K. thank CSIR, New Delhi, for fellowships. We
thank DST-FIST for the high-resolution NMR facility. We also
thank Prof. P. Ramamurthy, Director, National Centre for
Ultrafast Processes, University of Madras, for providing
photoluminescence and lifetime studies. We thank SAIF, IIT
Madras, for crystallography and VT NMR studies.
́
D.; Moock, K.; Baker, E. A.; Fogg, D. E.; Boere, R. T.; Dibble, P. W.
Can. J. Chem. 2009, 87, 738. (f) Paraskar, A. S.; Reddy, A. R.; Patra, A.;
Wijsboom, Y. H.; Gidron, O.; Shimon, L. J. W.; Leitus, G.; Bendikov,
M. Chem.Eur. J. 2008, 14, 10639. (g) Rainbolt, J. E.; Miller, G. P. . J.
Org. Chem. 2007, 72, 3020. (h) Mondal, R.; Shah, B. K.; Neckers, D.
C. J. Org. Chem. 2006, 71, 4085. (i) Miller, G. P.; Briggs, J. Org. Lett.
2003, 5, 4203. (j) Dodge, J. A.; Bain, J. D.; Chamberlin, A. R. J. Org.
Chem. 1990, 55, 4190. (k) Smith, J. G.; Fogg, D. E.; Munday, I. J.;
Sandborn, R. E.; Dibble, P. W. J. Org. Chem. 1988, 53, 2942.
(15) (a) Sivasakthikumaran, R.; Nandakumar, M.; Mohanakrishnan,
A. K. J. Org. Chem. 2012, 77, 9053. (b) Nandakumar, M.;
Sivasakthikumaran, R.; Mohanakrishnan, A. K. Eur. J. Org. Chem.
2012, 3647.
DEDICATION
■
This paper is dedicated to Prof. Ganesh Pandey on the occasion
of his 60th birthday.
REFERENCES
■
(1) (a) Dong, S.-C.; Zhang, L.; Liang, J.; Cui, L.-S.; Li, Q.; Jiang, Z.-
Q.; Liao, L.-S. J. Phys. Chem. C 2014, 118, 2375. (b) Jin, E.; Du, C.;
Wang, M.; Li, W.; Li, C.; Wei, H.; Bo, Z. Macromolecules 2012, 45,
7843. (c) Jeong, S. H.; Lee, J. Y. J. Mater. Chem. 2011, 21, 14604.
(d) Huang, T.-H.; Whang, W.-T.; Shen, J. Y.; Lin, J. T.; Zheng, H. J.
Mater. Chem. 2005, 15, 3233. (e) Sirringhaus, H.; Friend, R. H.; Wang,
(16) Iniesta, J.; Matsumoto, T.; Thiemann, T. J. Chem. Res. 2008, 2,
109.
(17) Rademacher, P. M.; Woods, C. M.; Huang, Q.; Szklarz, G. D.;
Nelson, S. D. Chem. Res. Toxicol. 2012, 25, 895.
(18) CCDC numbers for 4a, 6a, and 16e are 997380, 997383, and
997450, respectively (see the Supporting Information).
(19) Hauser, F. M.; Zhou, M.; Sun, Y. Synth. Commun. 2001, 31, 77.
(20) (a) Wang, X.; Jiang, P.; Chen, Y.; Luo, H.; Zhang, Z.; Wang, H.;
Li, X.; Yu, G.; Li, Y. Macromolecules 2013, 46, 4805. (b) Deng, Y.;
Chen, Y.; Liu, J.; Liu, L.; Tian, H.; Xie, Z.; Geng, Y.; Wang, F. ACS
Appl. Mater. Interfaces 2013, 5, 5741.
C.; Leuninger, J.; Mullen, K. J. Mater. Chem. 1999, 9, 2095.
(2) (a) Lincker, F.; Heinrich, B.; Bettignies, R. D.; Rannou, P.;
Pecaut, J.; Grevin, B.; Pron, A.; Donnio, B.; Demadrille, R. J. Mater.
́ ́
Chem. 2011, 21, 5238. (b) Rathnayake, H. P.; Cirpan, A.; Karasz, F. E.;
Odoi, M. Y.; Hammer, N. I.; Barnes, M. D.; Lahti, P. M. Chem. Mater.
2007, 19, 3265. (c) Zhu, Y.; Kulkarni, A. P.; Jenekhe, S. A. Chem.
Mater. 2005, 17, 5225. (d) Chen, C.-T.; Lin, J.-S.; Moturu, M. V. R. K.;
Lin, Y.-W.; Yi, W.; Tao, Y.-T.; Chien, C.-H. Chem. Commun. 2005,
3980.
̈
D
dx.doi.org/10.1021/ol501175q | Org. Lett. XXXX, XXX, XXX−XXX