Paper
PCCP
˙
6 L. Niedzicki, M. Kasprzyk, K. Kuziak, G. Z. Zukowska,
This allows implying that addition of the IL effects in this
coordination polymer [Li(TDI)2nÀ] the dissociation. At first, due
to coordination polymer interaction with TDI anions, the
dimeric structure is retained after fulfilling the coordination
M. Marcinek, W. Wieczorek and M. Armand, J. Power
Sources, 2011, 196, 1386.
7 L. Niedzicki, S. Grugeon, S. Laruelle, P. Judeinstein,
M. Bukowska, J. Prejzner, P. Szczecinski, W. Wieczorek
and M. Armand, J. Power Sources, 2011, 196, 8696.
4À
sphere. As the effect of that we assume formation of Li2TDI6
species (double triplets). The unusual conductivity plot could
be a consequence of the existence of such dimers in a more
concentrated solution. During further dissolution one might
´
8 M. Bukowska, P. Szczecinski, W. Wieczorek, L. Niedzicki,
B. Scrosati, S. Panero, P. Reale, M. Armand, S. Laruelle and
S. Grugeon, WO Pat., 023 413, 2010; M. Bukowska,
expect the occurrence of equilibria with lithium mononuclear
3À
´
P. Szczecinski, W. Wieczorek, L. Niedzicki, B. Scrosati,
complexes LiTDI4
.
S. Panero, P. Reale, M. Armand, S. Laruelle and S. Grugeon,
Fr. Pat., 2 935 382, 2009.
9 D. W. McOwen, S. A. Delp, W. A. Henderson, Meeting
Abstracts 2013, MA2013-02, 1182.
10 P. Ribiere, S. Grugeon, M. Morcette, S. Boyanov,
S. Laruelle and G. Marlair, Energy Environ. Sci., 2012,
5, 5271.
Noteworthy, almost identical crystal structures are observed
for different organic cations. This fact proves the stability of the
anionic coordination polymers formed. Thus, the observed
crystal structure assembly of the described species is directed
by the acidic lithium center interacting with TDI anions.
11 R. Renner, Environ. Sci. Technol., 2001, 35, 410A.
12 A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton,
S. Sheff, A. Wierzbicki, J. H. Davis and R. D. Rogers, Environ.
Sci. Technol., 2002, 36, 2523.
4. Conclusions
We have presented three new ILs based on our anion ‘‘tailored’’
for electrochemical applications: EMImTDI, PMImTDI and
BMImTDI. All three ILs are thermally and electrochemically
stable. They also contain less fluorine than the industry standard
(PF6À), which is bound in a more stable way than with P–F or B–F
bonds. The lithium electrolytes formed by the addition of LiTDI
salt to these ILs reach high ionic conductivity—over 3 mS cmÀ1
at 20 1C. The new IL-based electrolytes exhibit good lithium
cation transference numbers (over 0.1) overlapping with high
ionic conductivity. Negligible change of the ionic conductivity
upon lithium salt addition (less than 10% instead of few-fold
decrease)33 combined with high ionic conductivity has never
been seen before. As a result, we introduce a safe, effective and
in many aspects environmentally friendly completely new class
of electrolytes.
´
13 U. Domanska, in Ionic liquids in chemical analysis,
ed. M. Koel, CRC Press Taylor & Francis Group, 2008,
ch. 1.
14 J. P. Hallet and T. Welton, Chem. Rev., 2011, 111,
3508.
15 N. Plechkova and K. Seddon, Chem. Soc. Rev., 2008,
37, 123.
16 M. Armand, F. Enders, D. MacFarlane, H. Ohno and
B. Scrosati, Nat. Mater., 2009, 8, 621.
17 A. Fernicola, F. Croce, B. Scrosati, T. Watanabe and
H. Ohno, J. Power Sources, 2007, 174, 342.
˙
´
18 L. Niedzicki, G. Z. Zukowska, M. Bukowska, P. Szczecinski,
S. Grugeon, S. Laruelle, M. Armand, S. Panero, B. Scrosati,
M. Marcinek and W. Wieczorek, Electrochim. Acta, 2010,
55, 1450.
Acknowledgements
19 CRYSALISPRO Software system, Agilent Technologies UK Ltd.,
Oxford, UK, 2012.
20 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr.,
2008, 64, 112.
21 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard
and H. Puschmann, OLEX2: A complete structure solution,
refinement and analysis program, J. Appl. Crystallogr., 2009,
42, 339.
This work was financially supported by Warsaw University of
Technology. This work has been supported by the European
Union in the framework of European Social Fund through the
Warsaw University of Technology Development Programme,
realized by the Center for Advanced Studies.
22 P. Bruce and C. Vincent, J. Electroanal. Chem., 1987, 225, 1.
23 A. Chowdhury and S. T. Thynell, Thermochim. Acta, 2006,
443, 159.
References
1 M. Armand and J.-M. Tarascon, Nature, 2008, 451, 652.
2 B. Scrosati, J. Hassoun and Y. K. Sun, Energy Environ. Sci., 24 L. Niedzicki, E. Karpierz, A. Bitner, M. Kasprzyk,
2011, 4, 3287.
G. Z. Zukowska, M. Marcinek and W. Wieczorek, Electro-
chim. Acta, 2014, 117, 224.
25 K. Hayamizu, Y. Aihara, H. Nakagawa, T. Nukuda and
W. S. Price, J. Phys. Chem. B, 2004, 108, 19527.
3 V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach,
Energy Environ. Sci., 2011, 4, 3243.
4 M. Egashira, B. Scrosati, M. Armand, S. Beranger and
´
¨
¨
C. Michot, Electrochem. Solid-State Lett., 2003, 6, A71.
26 T. Fromling, M. Kunze, M. Schonhoff, J. Sundermeyer and
˙
5 L. Niedzicki, M. Kasprzyk, K. Kuziak, G. Z. Zukowska,
B. Roling, J. Phys. Chem. B, 2008, 112, 12985.
´
M. Armand, M. Bukowska, M. Marcinek, P. Szczecinski 27 O. Borodin, G. D. Smith and W. Henderson, J. Phys. Chem. B,
and W. Wieczorek, J. Power Sources, 2009, 192, 612.
2006, 110, 16879.
11424 | Phys. Chem. Chem. Phys., 2014, 16, 11417--11425
This journal is © the Owner Societies 2014