UPDATES
Jesse R. McAtee et al.
tame, Y. Yamamoto, Chem. Lett. 2001, 30, 982–983;
l) V. J. Meyer, M. Niggemann, Eur. J. Org. Chem. 2011,
2011, 3671–3674; m) Y. Nishimoto, M. Kajioka, T.
Saito, M. Yasuda, A. Baba, Chem. Commun. 2008,
6396–6398; n) R. Takeuchi, N. Ishii, M. Sugiura, N.
using this technology is now possible using completely
bench-stable and commercially available catalytic pre-
cursors. Furthermore, this new catalyst system ex-
pands the scope of vinylsilanes that can be prepared
using this method.
´
Sato, J. Org. Chem. 1992, 57, 4189–4194; o) P. Pawluc,
J. Szudkowska, G. Hreczycho, B. Marciniec, J. Org.
Chem. 2011, 76, 6438–6441; p) M. Yamane, K. Uera, K.
Narasaka, Bull. Chem. Soc. Jpn. 2005, 78, 477–486;
q) M. M. Doyle, W. R. Jackson, P. Perlmutter, Aust. J.
Chem. 1989, 42, 1907–1918; r) V. Gouverneur, B.
Greedy, Chem. Eur. J. 2002, 8, 766–772; s) B. Greedy,
V. Gouverneur, Chem. Commun. 2001, 233–234; t) P.
Experimental Section
General Procedure
In
a
nitrogen-filled glovebox Pd2(dba)3 (25.0 mmol,
2.5 mol%), phosphine 2 (50.0 mmol, 5.0 mol%), dichloro-
ethane (1.0 mL), triethylamine (1.0 mL), trimethylsilyl
iodide (0.2 mL, 1.4 mmol, 1.4 equiv.) and alkene (1.0 mmol,
1 equiv.) were added to a 4.0-mL vial containing a magnetic
stir bar. The vial was sealed with a Teflon lined cap and re-
moved from the glovebox. The vial was then placed in
a 408C oil bath and the mixture was allowed to stir for 24 h.
The vial was then cooled to room temperature, and opened
to air. The reaction was quenched with ~0.5 mL of brine
and diluted with ~1 mL diethyl ether. The layers were sepa-
rated and the aqueous layer was extracted with a second
~1 mL of diethyl ether. The combined organic layers were
dried over anhydrous magnesium sulfate, filtered, and con-
centrated under vacuum. The crude residue was purified by
flash column chromatography, vacuum distillation, or subli-
mation to yield the pure products.
´
Pawluc, G. Hreczycho, J. Szudkowska, M. Kubicki, B.
Marciniec, Org. Lett. 2009, 11, 3390–3393.
[2] G. R. Jones, Y. Landais, Tetrahedron 1996, 52, 7599–
7662.
[3] a) J. R. McAtee, S. E. S. Martin, D. T. Ahneman, K. A.
Johnson, D. A. Watson, Angew. Chem. 2012, 124, 3723–
3727; Angew. Chem. Int. Ed. 2012, 51, 3663–3667;
b) S. E. S. Martin, D. A. Watson, J. Am. Chem. Soc.
2013, 135, 13330–13333; c) J. R. McAtee, G. P. A. Yap,
D. A. Watson, J. Am. Chem. Soc. 2014, 136, 10166–
10172; d) S. E. S. Martin, D. A. Watson, Synlett 2013,
24, 2177–2182.
[4] For a nickel-catalyzed silyl-Heck reaction see: J. R.
McAtee, S. E. S. Martin, A. P. Cinderella, W. B. Reid,
K. A. Johnson, D. A. Watson, Tetrahedron 2014, 70,
4250–4256.
[5] For early papers and process related to the silyl-Heck
reaction see: a) H. Yamashita, T. Kobayashi, T. Haya-
shi, M. Tanaka, Chem. Lett. 1991, 20, 761–762; b) H.
Yamashita, M. Tanaka, K. Honda, J. Am. Chem. Soc.
1995, 117, 8873–8874; c) N. Chatani, N. Amishiro, S.
Murai, J. Am. Chem. Soc. 1991, 113, 7778–7780; d) N.
Chatani, N. Amishiro, T. Morii, T. Yamashita, S. Murai,
J. Org. Chem. 1995, 60, 1834–1840; e) J. Terao, K. Torii,
K. Saito, N. Kambe, A. Baba, N. Sonoda, Angew.
Chem. 1998, 110, 2798–2801; Angew. Chem. Int. Ed.
1998, 37, 2653–2656; f) J. Terao, Y. Jin, K. Torii, N.
Kambe, Tetrahedron 2004, 60, 1301–1308.
Acknowledgements
The University of Delaware (UD), the Research Corporation
(Cottrell Scholars Program), and the NSF (CAREER
CHE1254360) are gratefully acknowledged for support.
NMR and MS data were acquired at UD on instruments ob-
tained with the assistance of NSF (NSF CHE0421224,
CHE1229234 and CHE0840401) and NIH (NIH
P20M103541, P20M104316, P30M110758, S10RR02692, and
S10OD016267) funding.
[6] Y. Pan, G. B. Young, J. Organomet. Chem. 1999, 577,
257–264.
References
[7] a) C. Amatore, A. Jutand, F. Khalil, M. A. M’Barki, L.
Mottier, Organometallics 1993, 12, 3168–3178; b) I. J. S.
Fairlamb, Org. Biomol. Chem. 2008, 6, 3645–3656.
[8] a) D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J.
García-Fortanet, T. Kinzel, S. L. Buchwald, Science
2009, 325, 1661–1664; b) H. G. Lee, P. J. Milner, M. T.
Colvin, L. Andreas, S. L. Buchwald, Inorg. Chem. Acta.
2014, 422, 188–192.
[9] Part 300683, Aspira Scientific, Milpitas, CA.
[10] a) A. F. Littke, G. C. Fu, Angew. Chem. 2002, 114,
4350–4386; Angew. Chem. Int. Ed. 2002, 41, 4176–4211;
b) U. Christmann, R. Vilar, Angew. Chem. 2005, 117,
370–378; Angew. Chem. Int. Ed. 2005, 44, 366–374;
c) G. C. Fu, Acc. Chem. Res. 2008, 41, 1555–1564;
d) D. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27–
50.
[1] a) M. A. Brook, Silicon in Organic, Organometallic,
and Polymer Chemistry, Wiley, Chichester, 2000; b) I.
Fleming, A. Barbero, D. Walter, Chem. Rev. 1997, 97,
2063–2192; c) M. J. Curtis-Long, Y. Aye, Chem. Eur. J.
2009, 15, 5402–5416; d) T. Hiyama, E. Shirakawa, Or-
ganosilicon Compounds, in: Cross-Coupling Reactions,
(Edf.: N. Miyaura), Springer Verlag, Berlin, Heidel-
berg, 2002, Vol. 219, pp 61–85; e) Y. Nakao, T. Hiyama,
Chem. Soc. Rev. 2011, 40, 4893–4901; f) S. E. Denmark,
J. H.-C. Liu, Angew. Chem. 2010, 122, 3040–3049;
Angew. Chem. Int. Ed. 2010, 49, 2978–2986; g) K.
Aikawa, Y. Hioki, K. Mikami, J. Am. Chem. Soc. 2009,
131, 13922–13923; h) D. A. Evans, Y. Aye, J. Am.
Chem. Soc. 2006, 128, 11034–11035; i) K. Mikami, H.
Wakabayashi, T. Nakai, J. Org. Chem. 1991, 56, 4337–
4339; j) N. Asao, T. Shimada, Y. Yamamoto, J. Am.
Chem. Soc. 1999, 121, 3797–3798; k) N. Asao, K. Naba-
[11] Ligand 2: Part 300685, Aspira Scientific, Milpitas, CA.
[12] As determined by NMR and GC analysis.
2320
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2015, 357, 2317 – 2321