Communication
ChemComm
3 G. R. Pettit, Y. H. Meng, D. L. Herald, K. A. N. Graham, R. K. Pettit
and D. L. Doubek, J. Nat. Prod., 2003, 66, 1065.
4 (a) Y. Asano, S. Kitamura, T. Ohra, F. Itoh, M. Kajino, T. Tamura,
M. Kaneko, S. Ikeda, H. Igata, T. Kawamoto, S. Sogabe, S. Matsumoto,
T. Tanaka, M. Yamaguchi, H. Kimura and S. Fukumoto, Bioorg. Med.
Chem., 2008, 16, 4699; (b) A. Saeed and Z. Ashraf, Pharm. Chem. J.,
2008, 42, 277, and references therein; (c) J. F. Guastavino, S. M. Barolo
and R. A. Rossi, Eur. J. Org. Chem., 2006, 3898, and references therein.
Scheme 6 Coupling of amide 1g with alkyne 2c.
´
´
5 (a) A. V. Fernandez, J. A. Varela and C. Saa, Synthesis, 2012, 3285;
(b) G. Yang and W. Zhang, Org. Lett., 2012, 14, 268; (c) Z. Zheng and
H. Alper, Org. Lett., 2008, 21, 4903; (d) G. Chouhan and H. Alper, Org.
Lett., 2008, 21, 4987; (e) B. Yao, Q. Wang and J. Zhu, Angew. Chem., Int.
Ed., 2012, 51, 5170; ( f ) T. Hu, K. Liu, M. Shen, X. Yuan, Y. Tang and
C. Li, J. Org. Chem., 2007, 72, 8555; (g) C. C. Liu, K. Parthasarathy and
C. H. Cheng, Org. Lett., 2010, 12, 3518; (h) A. C. Tadd, A. Matsuno,
M. R. Fielding and M. C. Willis, Org. Lett., 2009, 11, 583; (i) H. Zhong,
D. Yang, S. Wang and J. Huang, Chem. Commun., 2012, 48, 3236;
( j) V. R. Batchu, D. K. Barange, D. Kumar, B. R. Sreekanth, K. Vyas,
E. A. Reddy and M. Pal, Chem. Commun., 2007, 1966; (k) For a non-
metal mediated method, see: D. Y. Li, X. S. Shang, G. R. Chen and
P. N. Liu, Org. Lett., 2013, 15, 3848.
Scheme 7 Coupling of amide 1c with alkyne 2b under the conditions
given in Scheme 3.
6 N. G. Kundu and M. W. Khan, Tetrahedron, 2000, 56, 4777.
7 T. Yao and R. C. Larock, J. Org. Chem., 2005, 70, 1432.
8 For a review, see: (a) G. Zeni and R. C. Larock, Chem. Rev., 2004,
104, 2285; (b) A. Nagarajan and T. R. Balasubramanian, Indian
J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 1989, 28, 67;
(c) H. Sashida and A. Kawamukai, Synthesis, 1999, 1145; (d) C. Sun
and B. Xu, J. Org. Chem., 2008, 73, 7361; (e) N. Sakai, K. Annaka,
A. Fujita, A. Sato and T. Konakahara, J. Org. Chem., 2008, 73, 4161.
9 M. Jithunsa, M. Ueda, N. Aoi, S. Sugita, T. Miyoshi and O. Miyata,
Synlett, 2013, 475.
10 Notably, 5-membered ring products (isoindolin-1-ones) were
obtained from microwave assisted coupling/cyclization of 2-bromo-
benzamides with arylacetylene, e.g. for Cu-free Pd-mediated
method, see: (a) M. Hellal and G. D. Cuny, Tetrahedron Lett., 2011,
52, 5508; For Pd-free Cu-mediated method, see: (b) L. Zhang,
Y. Zhang, X. Wang and J. Shen, Molecules, 2013, 18, 654; For
microwave and the Pd-free Cu-mediated method, see: (c) J. Pan,
Z. Xu, R. Zeng and J. Zou, Chin. J. Chem., 2013, 31, 1022, DOI:
10.1002/cjoc.201300346. See also ; (d) H. Cao, L. McNamee and
H. Alper, Org. Lett., 2008, 10, 5281; (e) L. Li, M. Wang, X. Zhang,
Y. Jiang and D. Ma, Org. Lett., 2009, 11, 1309 and ref. 6.
following the pathway shown in Scheme 5.15 Moreover, coupling of 1c
with 2b under the same conditions afforded 3o (Scheme 7) confirm-
ing the need for the –CONH2 (with no substituent on NH2) group to
afford a product that belongs to the isoquinolin-1(4H)-one class 4.15
The observation that compound 3s did not provide the corresponding
isoquinolin-1(4H)-one derivative when treated with 2 equiv. of
Cu(OAc)2 (under the conditions given in Scheme 3) ruled out the
possibility of formation of 4 via isomerization of 3.15
In conclusion, Cu-mediated coupling/cyclization of 2-iodobenz-
amides with terminal alkynes in PEG afforded N-(un)substituted
isoquinolin-1(2H)-ones instead of isoindolin-1-ones. The methodology
is Pd-free and does not require the use of any expensive reactants,
reagents or catalysts. Both the Cu-catalyst and the solvent are recycl-
able. We also report the unprecedented formation of regioisomeric
isoquinolin-1(4H)-ones in the presence of excess of the Cu reagent.
RGC thanks the management of DRL for encouragement and
the analytical group of DRL for spectral data. Authors thank Mr
Perla Ganesh of Aurigene Discovery Technologies, Hyderabad and
Shivashankar Sripelly and N. Sunil K. Reddy of DRILS, Hyderabad
for NMR studies. Authors also thank Dr Sarbani Pal, MNR degree &
PG College, Hyderabad for her valuable inputs and discussion.
11 For COSY, HSQC and HMBC spectra of 3i and HSQC and HMBC
spectra of 3a see the ESI†.
12 (a) The appearance of a peak near 4.0–4.5 d in the 1H NMR spectra
and 43.0–43.5 ppm in 13C NMR spectra indicated the presence of a
benzylic–CH2– moiety in compound 4 (see ESI†). For HSQC and
HMBC spectra of 4a see the ESI†; (b) see: CSID: 10551086, http://
13:54, Mar 1, 2014).
13 We propose a Cu(II)/Cu(IV) pathway for the conversion of 1 to C instead
of the Cu(I)/Cu(III) mechanism (that though can not be ruled out
completely, for a review, see: E. Perotto, G. P. M. van Klink, G. van
Koten and J. G. de Vries, Dalton Trans., 2010, 39, 10338) as the second
pathway is unable to explain the recovery and recyclability of the catalyst.
Notes and references
1 For selected and scholarly reviews, see: (a) I. Nakamura and 14 The intermediacy of C was further supported by the fact that alkyne
Y. Yamamoto, Chem. Rev., 2004, 104, 2127; (b) F. Alonso,
I. P. Beletskaya and M. Yus, Chem. Rev., 2004, 104, 3079;
(c) S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873.
5 (1 mmol) upon treatment with Cu(OAc)2 (20 mol%) and Cs2CO3
(2 mmol) in PEG-400 (5 mL) at 80–90 1C for 2 h afforded the cyclized
product 3i in 45% yield.
2 V. A. Glushkov and Y. V. Shklyaev, Chem. Heterocycl. Compd., 2001, 15 We thank one of the reviewers for his suggestion to perform this
37, 663, and references cited therein.
experiment.
6800 | Chem. Commun., 2014, 50, 6797--6800
This journal is ©The Royal Society of Chemistry 2014