Organic Letters
Letter
conjugate addition to 3-methylcyclohexenone (3e) also took
place to give 4e in 67% yield.14
The present hydroboration may be triggered by formation of
a borylsilver(I) species15 (5) arising from σ-bond metathesis
between a silver(I) alkoxide and diboron as is the case in the
copper(I)-catalyzed borylation reactions (step A, Scheme 2).
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and characterization data. This
material is available free of charge via the Internet at http://
■
S
AUTHOR INFORMATION
Corresponding Author
■
Scheme 2. A Proposed Catalytic Cycle for Ag-Catalyzed
Hydroboration
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Miyaura, N. Top. Curr. Chem. 2002, 219, 11. (c) Molander, G. A.;
Ellis, N. Acc. Chem. Res. 2007, 40, 275. (d) Boronic Acids; Hall, D. G.,
Ed.; Wiley-VCH: Weinheim, 2011.
(2) Yun, J. Asian J. Org. Chem. 2013, 2, 1016.
(3) For recent examples, see: (a) Semba, K.; Fujihara, T.; Terao, J.;
Tsuji, Y. Chem.Eur. J. 2012, 18, 4179. (b) Yuan, W.; Ma, S. Org.
́
Biomol. Chem. 2012, 10, 7266. (c) Moure, A. L.; Arrayas, R. G.;
́
Cardenas, D. J.; Alonso, I.; Carretero, J. C. J. Am. Chem. Soc. 2012,
134, 7219. (d) Park, J. K.; Ondrusek, B. A.; McQuade, D. T. Org. Lett.
2012, 14, 4790. (e) Jung, H.-Y.; Yun, J. Org. Lett. 2012, 14, 2606.
(f) Yuan, W.; Ma, S. Adv. Synth. Catal. 2012, 354, 1867. (g) Kubota,
K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635.
(h) Semba, K.; Shiomiya, M.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem.
Eur. J. 2013, 19, 7125. (i) Meng, F.; Jung, B.; Haeffner, F.; Hoveyda, A.
H. Org. Lett. 2013, 15, 1414. (j) Matsuda, N.; Hirano, K.; Satoh, T.;
Miura, M. J. Am. Chem. Soc. 2013, 135, 4934. (k) Semba, K.; Fujihara,
T.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed. 2013, 52, 12400.
(l) Sakae, R.; Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett.
2014, 16, 1228.
(4) For our results, see: (a) Yoshida, H.; Kawashima, S.; Takemoto,
Y.; Okada, K.; Ohshita, J.; Takaki, K. Angew. Chem., Int. Ed. 2012, 51,
235. (b) Takemoto, Y.; Yoshida, H.; Takaki, K. Chem.Eur. J. 2012,
18, 14841. (c) Yoshida, H.; Kageyuki, I.; Takaki, K. Org. Lett. 2013, 15,
952. (d) Yoshida, H.; Shinke, A.; Takaki, K. Chem. Commun. 2013, 49,
11671. (e) Kageyuki, I.; Yoshida, H.; Takaki, K. Synthesis DOI:
10.1055/s-0033-1341267. (f) Yoshida, H.; Takemoto, Y.; Takaki, K.
Chem. Commun. DOI: 10.1039/C4CC01757A.
(5) (a) Kleeberg, C.; Dang, L.; Lin, Z.; Marder, T. B. Angew. Chem.,
Int. Ed. 2009, 48, 5350. (b) Yang, C.-T.; Zhang, Z.-Q.; Tajuddin, H.;
Wu, C.-C.; Liang, J.; Liu, J.-H.; Fu, Y.; Czyzewaka, M.; Steel, P. G.;
Marder, T. B.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 528. (c) Ito, H.;
Kubota, K. Org. Lett. 2012, 14, 890.
Subsequent addition of 5 across a carbon−carbon unsaturated
bond (step B, borylargentation), which produces a β-boryl
organosilver species (6), followed by protonation with MeOH
gives a hydroboration product with regeneration of the silver
alkoxide (step C). The regiochemical outcomes of the
hydroboration are decisively governed by the mode of the
borylargentation, and the mode is similar to that of the well-
studied borylcupration, where preferential addition of a boryl
group to a terminal (with terminal alkynes)11,16 or a central
carbon (with allenes) occurs.3f,h,i At present factors responsible
for the high β-selectivity with terminal alkynes still remain
uncertain.
(6) (a) Laitar, D. S.; Muller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005,
̈
127, 17196. (b) Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem.,
Int. Ed. 2007, 46, 6710.
(7) Ramírez, J.; Corberan
Chem. Commun. 2005, 3056.
́
́ ́
, R.; Sanau, M.; Peris, E.; Fernandez, E.
In conclusion, we have demonstrated that a silver complex
exhibits potent catalysis toward the borylation reaction of
unsaturated carbon linkages and that the method provides
direct access to diverse organoboron compounds of high
synthetic utility. The prominent feature of the silver catalyst has
been exemplified in the β-selective hydroboration of terminal
alkynes, and moreover the synthetic versatility of the present
system may be expanded beyond hydroboration by capturing
the key intermediate (6) with other electrophiles than proton.17
Further studies on the silver-catalyzed borylation reactions as
well as on the mechanistic details of the hydroboration are in
progress.
(8) (a) Coinage Metals in Organic Synthesis; Lipshutz, B., Yamamoto,
Y., Eds.; Chem. Rev. 2008, 108, 2793. (b) Silver in Organic Chemistry;
Harmata, M., Ed.; Wiley: Hoboken, NJ, 2010. (c) Yamamoto, Y. J. Org.
Chem. 2007, 72, 7817.
(9) (a) Edwards, D. A.; Longley, M. J. Inorg. Nucl. Chem. 1978, 40,
1599. (b) Edwards, D. A.; Harker, R. M.; Mahon, M. F.; Molloy, K. C.
Inorg. Chim. Acta 2002, 328, 134.
(10) Visbal, R.; Laguna, A.; Gimeno, M. C. Chem. Commun. 2013, 49,
5642.
(11) (a) Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet. Chem.
2001, 625, 47. (b) Jang, H.; Zhugralin, A. R.; Lee, Y.; Hoveyda, A. H. J.
Am. Chem. Soc. 2011, 133, 7859.
(12) Solvent screening in the reaction of 1-octyne (1b) using 3 equiv
of MeOH (NMR yield): toluene, 86% (β:α = 84:16, 26 h); THF, 38%
(β:α = 84:16, 19 h); DMF, 19% (β:α = 83:17, 19 h).
C
dx.doi.org/10.1021/ol501465x | Org. Lett. XXXX, XXX, XXX−XXX