Page 3 of 5
ChemComm
Please do not adjust margins
Journal Name
COMMUNICATION
Notes and references
DOI: 10.1039/D0CC06452A
Table 3 Substrate Scope of Dienesa,b
1
(a) M. Sugita, Y. Natori, N. Sueda, K. Furihata, H. Seto and N.
Ōtake, J. Antibiot., 1982, 35, 1474; (b) M. Avignon-Tropis, J.
M. Berjeaud, J. R. Pougny, I. Fréchard-Ortuno, D. Guillerm
and G. Linstrumelle, J. Org. Chem., 1992, 57, 651; (c) G. A.
Molander and F. Dehmel, J. Am. Chem. Soc., 2004, 126,
10313; (d) C. Thirsk and A. Whiting, J. Chem. Soc., Perkin
Trans. 1, 2002, 999; (e) J. P. Knowles, V. E. O'Connor and A.
Whiting, Org. Biomol. Chem., 2011, 9, 1876; (f) S. BouzBouz
and J. Cossy, Org. Lett., 2004, 6, 3469.
(a) R. E. Martin and F. Diederich, Angew. Chem. Int. Ed. Engl.,
1999, 38, 1350; (b) S.V. Vasyluk, O.O. Viniychuk, Y.M.
Poronik, Y.P. Kovtun, M.P. Shandura, V.M. Yashchuk and O.D.
Kachkovsky, J. Mol. Struct., 2011, 990, 6; (c) J. M. Kauffman
and G. Moyna, J. Org. Chem., 2003, 68, 839.
Ph
R4
Ph
Pd(OAc)2, P(2-MeOPh)3
CsOPiv, 1,4-dioxane
R3
R4
Br
R3
70
℃, 7 h, dark
1a
2
3
Ph
Ph
Ph
Ph
Me
Cl
OMe
N
3s
3t
3u
, 43%
, 98%
, 68%
c
, 90%
2
Ph
Ph
O
F
c
3v
3w
3x
, 90%
, 76%
Ph
Ph
nPentyl
3
4
(a) B. E. Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863;
(b) R. J. Petroski and R. J. Bartelt, J. Agric. Food. Chem., 2007,
55, 2282; (c) Y. Leblanc, B. J. Fitzsimmons, R. Zamboni and J.
Rokach, J. Org. Chem., 1988, 53, 265.
Me
3y
3z
, 31%
, 55%
(a) G. Dumonteil, M.-A. Hiebel and S. Berteina-Raboin,
Catalysts, 2018, 8, 115; (b) S. E. Denmark and S. Fujimori, J.
Am. Chem. Soc., 2005, 127, 8971; (c) N. J. McAlpine, L. Wang
and B. P. Carrow, J. Am. Chem. Soc., 2018, 140, 13634; (d) V.
T. Nguyen, H. T. Dang, H. H. Pham, V. D. Nguyen, C. Flores-
Hansen, H. D. Arman and O. V. Larionov, J. Am. Chem. Soc.,
2018, 140, 8434; (e) H. Takayama and T. Suzuki, J. Chem.
Soc., Chem. Commun., 1988, 1044; (f) L. Crombie, M. A.
Horsham and S. R. M. Jarrett, J. Chem. Soc., Perkin Trans. 1,
1991, 1511; (g) E. Li, H. Zhou, V. Östlund, R. Hertzberg and C.
Moberg, New J. Chem., 2016, 40, 6340; (h) D. Brandt, V.
Bellosta and J. Cossy, Org. Lett., 2012, 14, 5594; (i) A.
Torrado, B. Iglesias, S. López and A. R. de Lera, Tetrahedron,
1995, 51, 2435; (j) T. He, P. Gao, S. Fang, Y. Chi and Y. Chen,
Tetrahedron Lett., 2017, 58, 4832.
(a) M. Mato, C. García-Morales and A. M. Echavarren, ACS
Catal., 2020, 10, 3564; (b) M. S. Hadfield and A.-L. Lee, Chem.
Commun., 2011, 47, 1333; (c) N. Kim and R. A. Widenhoefer,
Chem. Sci., 2019, 10, 6149; (d) Z. Huang and E.-i. Negishi,
Org. Lett., 2006, 8, 3675; (e) H. Zhang, X. Wu, Y. Wei and C.
Zhu, Org. Lett., 2019, 21, 7568.
aReaction conditions: 1a (0.20 mmol), 2 (0.40 mmol, 2 equiv), Pd(OAc)2
(0.01 mmol, 5 mol %), (2-MeOPh)3P (0.02 mmol, 10 mol %), CsOPiv (0.40
mmol, 2 equiv), 1,4-dioxane (2 mL), in dark, Ar atmosphere, 70 ℃, 7 h.
bIsolated yield. cPerformed at 90 oC
It is worth mentioning that the obtained trienes would
undergo isomerization in the light. If a solution of 3g in CDCl3
was exposed in the light for 6 hours, the ratio of two E/Z
isomers reached an equilibration of 1:1 (Eq 1). This
phenomenon was also invested in the exposure of 20 W white
LED. The charted curve of the kinetic process was roughly
corresponded to the first-order reversible reaction.15
5
Me
Me
Ph
sunlight, CDCl3
rt, 6 h
Ph
Ph
(1)
6
7
S. K. Stewart and A. Whiting, Tetrahedron Lett., 1995, 36,
3929.
3c 3g
/
= 1 : 1
Me
3g
3c
3g
(a) S. Ma and Z. Gu, Angew. Chem. Int. Ed., 2005, 44, 7512;
(b) F. Shi and R. C. Larock, Top. Curr. Chem., 2010, 292, 123;
(c) A. Rahim, J. Feng and Z. Gu, Chin. J. Chem., 2019, 37, 929.
(a) M.-Y. Li, P.-B. Han, T.-J. Hu, D. Wei, G. Zhang, A.-J. Qin, C.-
G. Feng, B. Tang and G.-Q. Lin, iscience, 2020, 23, 100966; (b)
D. Wei, T.-J. Hu, C.-G. Feng and G.-Q. Lin, Chin. J. Chem.,
2018, 36, 743; (c) T.-J. Hu, M.-Y. Li, Q. Zhao, C.-G. Feng and
G.-Q. Lin, Angew. Chem. Int. Ed., 2018, 57, 5871; (d) T.-J. Hu,
G. Zhang, Y.-H. Chen, C.-G. Feng and G.-Q. Lin, J. Am. Chem.
Soc., 2016, 138, 2897.
(a) Q. Wang, R. Chen, J. Lou, D. H. Zhang, Y.-G. Zhou and Z.
Yu, ACS Catal., 2019, 9, 11669; (b) H. Zhang, Y. Yu and X.
Huang, Org. Biomol. Chem., 2020, 18, 5115; (c) R. Rocaboy
and O. Baudoin, Org. Lett., 2019, 21, 1434.
8
In summary, a stereoselective synthesis of trisubstituent
1,3,5-trienes has been realized by the 1,4-palladium
migration/Heck sequence. A wide range of trisubstituted 1,3,5-
trienes were produced by this transformation in medium to
excellent yields. It is noteworthy that the substrates bearing
two similar aryl groups at terminal positions can be obtained in
high stereoselectivity, which are difficult to be prepared by
traditional methods. In addition, we found that the obtained
trienes can undergo easy E/Z isomerization in the light.
9
10 M. Wakioka, Y. Nakamura, M. Montgomery and F. Ozawa,
Organometallics, 2015, 34, 198.
11 L. Ackermann, Chem. Rev., 2011, 111, 1315.
12 (a) L. Wang and B. P. Carrow, ACS Catal., 2019, 9, 6821; (b) D.
Lapointe and K. Fagnou, Chem. Lett., 2010, 39, 1119.
13 CCDC 2030783 (3f) contain the supplementary
crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre.
Conflicts of interest
The authors declare no competing financial interest.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins