Journal of the American Chemical Society
Communication
Schuth, F.; Bongard, H.-J.; Lu, A.-H. J. Am. Chem. Soc. 2011, 133,
11378.
̈
and 84% of wet nitrogen (65% RH). IRMOF-74-III-CH2NH2
showed a breakthrough time nearly identical to that observed
under dry conditions (610 10 s g−1) (Figure 3b), while the
breakthrough time of IRMOF-74-III-CH3 under wet conditions
showed an 80% decrease compared to that in the absence of
moisture. This behavior indicates that the CO2 uptake in
IRMOF-74-III-CH3 is, as expected, mainly attributable to the
open magnesium sites, which are occupied by water molecules
under humid conditions.12 In IRMOF-74-III-CH2NH2, the
CO2 uptake takes place at the linker amine sites, while the open
magnesium sites are not accessible under dry nor humid
conditions (section S7, SI); therefore, the effect of water on the
CO2 uptake should be negligible. This is also supported by the
dissimilar desorption behavior compared to IRMOF-74-III-
CH3 (Figures 3a and S20).
IRMOF-74-III-CH2NH2 with bound CO2 was regenerated
by purging with dry nitrogen followed by heating at 90 °C to
remove the CO2. A second cycle of humidification and CO2
uptake was applied as explained above to obtain a nearly
identical breakthrough time (600 10 s g−1) (section S9, SI).
We further note that the PXRD pattern of the sample after
these cycles was identical to that of the activated sample, thus
indicating full preservation of IRMOF-74-III-CH2NH2 struc-
ture throughout the CO2 capture process (Figure S16).
(5) (a) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.;
Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012,
112, 724. (b) Gassensmith, J. J.; Furukawa, H.; Smaldone, R. A.;
Forgan, R. S.; Botros, Y. Y.; Yaghi, O. M.; Stoddart, J. F. J. Am. Chem.
Soc. 2011, 133, 15312. (c) Britt, D.; Furukawa, H.; Wang, B.; Glover,
T. G.; Yaghi, O. M. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20637.
(d) Horike, S.; Kishida, K.; Watanabe, Y.; Inubushi, Y.; Umeyama, D.;
Sugimoto, M.; Fukushima, T.; Inukai, M.; Kitagawa, S. J. Am. Chem.
Soc. 2012, 134, 9852. (e) Xiang, S.; He, Y.; Zhang, Z.; Wu, H.; Zhou,
W.; Krishna, R.; Chen, B. Nat. Commun. 2012, 3, 954. (f) Li, T.;
Sullivan, J. E.; Rosi, N. L. J. Am. Chem. Soc. 2013, 135, 9984. (g) Li, B.;
et al. Angew. Chem., Int. Ed. 2012, 51, 1412. (h) Wriedt, M.; Sculley, J.
P.; Yakovenko, A. A.; Ma, Y.; Halder, G. J.; Balbuena, P. B.; Zhou, H.-
C. Angew. Chem., Int. Ed. 2012, 51, 9804. (i) Deria, P.; Mondloch, J. E.;
Tylianakis, E.; Ghosh, P.; Bury, W.; Snurr, R. Q.; Hupp, J. T.; Farha,
O. K. J. Am. Chem. Soc. 2013, 135, 16801. (j) Lu, A.-H.; Hao, G.-P.
Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 2013, 109, 484.
(k) Hedin, N.; Andersson, L.; Bergstrom, L.; Yan, J. Appl. Energy 2013,
104, 418. (l) Samanta, A.; Zhao, A.; Shimizu, G. K. H.; Sarkar, P.;
Gupta, R. Ind. Eng. Chem. Res. 2012, 51, 1438.
(6) (a) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M.
Science 2013, 341, 974. (b) Furukawa, H.; Cordova, K. E.; O’Keeffe,
M.; Yaghi, O. M. Science 2013, 341, 1230444.
(7) (a) McDonald, T. M.; Lee, W. R.; Mason, J. A.; Wiers, B. M.;
Hong, C. S.; Long, J. R. J. Am. Chem. Soc. 2012, 134, 7056. (b) Planas,
N.; Dzubak, A. L.; Poloni, R.; Lin, L.-C.; McManus, A.; McDonald, T.
M.; Neaton, J. B.; Long, J. R.; Smit, B.; Gagliardi, L. J. Am. Chem. Soc.
2013, 135, 7402. (c) Lee, W. R.; Hwang, S. Y.; Ryu, D. W.; Lim, K. S.;
Han, S. S.; Moon, D.; Choi, J.; Hong, C. S. Energy Environ. Sci. 2014, 7,
744. (d) Cao, Y.; Song, F.; Zhao, Y.; Zhong, Q. J. Environ. Sci. 2013,
25, 2081. (e) Demessence, A.; D’Alessandro, D. M.; Foo, M. L.; Long,
J. R. J. Am. Chem. Soc. 2009, 131, 8784.
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed organic linkers and MOFs synthetic procedures,
including characterization by NMR spectra, PXRD, nitrogen
adsorption, breakthrough experiments, and complete refs 4b,
5g, and 9. This material is available free of charge via the
(8) (a) Lu, W.; Sculley, J. P.; Yuan, D.; Krishna, R.; Wei, Z.; Zhou,
H.-C. Angew. Chem., Int. Ed. 2012, 51, 7480. (b) Arstad, B.; Fjellvag,
̊
H.; Kongshaug, K. O.; Swang, O.; Blom, R. Adsorption 2008, 14, 755.
(c) Qiao, Z.; Zhou, J.; Lu, X. Fluid Phase Equilib. 2014, 362, 342.
(9) Deng, H.; et al. Science 2012, 336, 1018.
AUTHOR INFORMATION
Corresponding Author
■
(10) (a) Cohen, S. M. Chem. Rev. 2012, 112, 970. (b) Lun, D. J.;
Waterhouse, G. I. N.; Telfer, S. G. J. Am. Chem. Soc. 2011, 133, 5806.
(11) Pinto, M. L.; Mafra, L.; Guil, J. M.; Pires, J.; Rocha, J. Chem.
Mater. 2011, 23, 1387.
Notes
The authors declare no competing financial interest.
(12) Liu, J.; Benin, A. I.; Furtado, A. M. B.; Jakubczak, P.; Willis, R.
ACKNOWLEDGMENTS
R.; LeVan, M. D. Langmuir 2011, 27, 11451.
■
This work was partially supported for synthesis and character-
ization by BASF SE (Ludwigshafen, Germany), gas adsorption
by U.S. Department of Defense, Defense Threat Reduction
Agency (HDTRA 1-12-1-0053), and carbon dioxide adsorption
studies by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, Energy Frontier Research
Center (DE-SC0001015).
REFERENCES
■
(1) Granite, E. J.; Pennline, H. W. Ind. Eng. Chem. Res. 2002, 41,
5470.
(2) (a) Li, G.; Xiao, P.; Webley, P.; Zhang, J.; Singh, R.; Marshall, M.
Adsorption 2008, 14, 415. (b) Liu, J.; Thallapally, P. K.; McGrail, B. P.;
Brown, D. R.; Liu, J. Chem. Soc. Rev. 2012, 41, 2308. (c) Yu, J.;
Balbuena, P. B. J. Phys. Chem. C 2013, 117, 3383.
(3) (a) Sharma, S. D.; Azzi, M. Fuel 2014, 121, 178. (b) Gouedard,
C.; Picq, D.; Launay, F.; Carrette, P.-L. Int. J. Greenhouse Gas Control
2012, 10, 244. (c) Johnson, J. Chem. Eng. News 2004, 82 (51, Dec 21),
36.
(4) (a) Li, D.; Furukawa, H.; Deng, H.; Liu, C.; Yaghi, O. M.;
Eisenberg, D. S. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 191.
(b) Nugent, P.; et al. Nature 2013, 495, 80. (c) Hao, G.-P.; Li, W.-
C.; Qian, D.; Wang, G.-H.; Zhang, W.-P.; Zhang, T.; Wang, A.-Q.;
D
dx.doi.org/10.1021/ja503296c | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX