Journal of the American Chemical Society
Communication
(62.8:37.2) (entry 8). The reaction of terminal olefin 27 gave a
good yield and high enantioselectivity of 92.5:7.5 with exclusive
exo cyclization (entry 9). Carboxamide 29 afforded the product
in good yield with constitutional selectivity, but showed
diminished e.r. (entry 10). Presumably, protonation of the
carbonyl group attenuates the nucleophilicity of the nitrogen and
prevents rapid capture of the intermediate thiiranium ion, thus
allowing racemization.
The influence of tether length on cyclization was also
investigated. Two-carbon-tethered substrate 31 cyclized to
pyrrolidine 32 in 86% yield and 91.3:8.7 e.r. with complete
endo selectivity (entry 11). Interestingly, four-carbon-tethered
substrate 33 showed the impact of conjugation on biasing the
two olefinic carbons by affording exclusively azepane 34 (entry
12). The structure and the absolute configuration of 34 were
established by X-ray crystallography.14 In contrast, the non-
conjugated substrates 35 and 37 afforded only piperidine
products via exo cyclization, indicating the preference to form
the six-membered rings for dialkyl-substituted olefins. Addition-
ally, reactions with both 35 and 37 gave the products in good
yields and excellent enantioselectivities.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Institutes of Health for generous
financial support (R01 GM85235). Dedicated to Prof. John A.
Katzenellenbogen on the occasion of his 70th birthday.
REFERENCES
■
(1) (a) Barker, D. In Comprehensive Heterocyclic Chemistry III;
Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K.,
Eds.; Pergamon Press: Oxford, 2008; Vol. 7, pp 171−216. (b) Keller, P.
A. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.,
Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Pergamon
Press: Oxford, 2008; Vol. 7, pp 217−308.
(2) (a) Enders, D.; Tiebes, J. Liebigs Ann. Chem. 1993, 173−177.
(b) Gersdorff, W. A. J. Am. Chem. Soc. 1933, 55, 2941−2945.
(c) Dragutan, I.; Dragutan, V.; Demonceau, A. RSC Adv. 2012, 2,
719−736. (d) He, R.; Kurome, T.; Giberson, K. M.; Johnson, K. M.;
Kozikowski, A. P. J. Med. Chem. 2005, 48, 7970−7979.
(3) (a) Royer, J. In Asymmetric Synthesis of Nitrogen Heterocycles; Wiley-
VCH: Weinheim, 2009. (b) Bailey, P. D.; Millwood, P. A.; Smith, P. D.
Chem. Commun. 1998, 633−640. (c) Laschat, S.; Dickner, T. Synthesis
2000, 13, 1781−1813. (d) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435−
446. (e) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R.
Tetrahedron 2003, 59, 2953−2989. (f) Buffat, M. G. P. Tetrahedron
2004, 60, 1701−1729.
The proposed catalytic cycle for the sulfenoamination reaction
is shown in Figure 1.15 Sulfenylating agent 2 is activated with
MsOH and then transfers the sulfenyl moiety to the Lewis base
(S)-3f, forming the chiral sulfenylating complex i.7c Subsequent
transfer of the sulfenium ion from i to the alkene furnishes the
enantioenriched chiral thiiranium ion intermediate ii. Finally,
capture of the thiiranium ion with the pendant tosylamide and
subsequent deprotonation affords the enantioenriched product.
(4) (a) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47,
1560−1638. (b) Gutmann, V. The Donor-Acceptor Approach to
Molecular Interactions; Plenum: New York, 1978. (c) Jensen, W. B.
The Lewis Acid-Base Concepts; Wiley-Interscience: New York, 1980.
(5) (a) Denmark, S. E.; Kalyani, D.; Collins, W. R. J. Am. Chem. Soc.
2010, 132, 15752−15765. (b) Denmark, S. E.; Collins, W. R. Org. Lett.
2007, 9, 3801−3804.
(6) Denmark, S. E.; Kornfilt, D. J. P.; Vogler, T. J. Am. Chem. Soc. 2011,
133, 15308−15311.
(7) (a) Denmark, S. E.; Jaunet, A. J. Am. Chem. Soc. 2013, 135, 6419−
6422. (b) Denmark, S. E.; Jaunet, A. J. Org. Chem. 2014, 79, 140−171.
(c) Denmark, S. E.; Chi, H. M. J. Am. Chem. Soc. 2014, 136, 3655−3663.
(8) Smit, V. A.; Zefirov, N. S.; Bodrikov, I. V.; Krimer, M. Z. Acc. Chem.
Res. 1979, 12, 282−288.
(9) Denmark, S. E.; Vogler, T. Chem.Eur. J. 2009, 15, 11737−11745.
(10) Chiral Brønsted acid catalysis: (a) Li, L.; Li, Z.; Huang, D.; Wang,
H.; Shi, Y. RSC Adv. 2013, 3, 4523−4525. For an example of
enantioselective selenoamination, see: (b) Wei, Q.; Wang, Y.-Y.; Du, Y.-
L.; Gong, L.-Z. Beilstein J. Org. Chem. 2013, 9, 1559−1564.
(11) (a) Pelter, A.; Ward, R.; Sirit, A. Tetrahedron: Asymmetry 1994, 5,
1745−1762. (b) Evans, P.; McCabe, T.; Morgan, B. S.; Reau, S. Org. Lett.
2005, 7, 43−46.
Figure 1. Proposed catalytic cycle for the sulfenoamination.
(12) See the Supporting Information.
(13) Li, L.; Wang, H.; Huang, D.; Shi, Y. Tetrahedron 2012, 68, 9853−
In conclusion, a Lewis base catalyzed, enantioselective,
intramolecular sulfenoamination of unactivated olefins has
been developed. The reaction produces saturated N-heterocyclic
rings with high enantioselectivities for a wide range of trans
olefins. Extensions to intermolecular sulfenoamination reactions
are under investigation.
9859.
(14) The crystallographic coordinates of 34 have been deposited with
the CCDC; deposition no. 981943. These data can be obtained free of
charge via from the Cambridge Crystallographic Data Centre, at www.
(15) The kinetic, spectroscopic, structural, and computational
characterization of this catalytic cycle has been completed and submitted
for publication.
ASSOCIATED CONTENT
■
S
* Supporting Information
Full experimental procedures, characterization data, and X-ray
coordinates for 34. This material is available free of charge via the
D
dx.doi.org/10.1021/ja5046296 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX