6
Tetrahedron
19
2
1.0; F NMR (376 MHz, CDCl ): δ = -76.5
A
; H
C
R
C
M
E
S
P
(E
T
I)
E
m
D
/z MAfo
N
r R
U
O
S
C
C
S,
R
S
I
EM. We also thank Prof. Baomin Wang and Dr.
P
T
3
calcd. for C H F OS: 234.0326, found: 234.0327.
Yuming Song for valuable discussions.
10
9 3
4
.2.2 1,1,1-Trifluoro-3-(4-cyanophenoxy) propan-2,2-diol (3i-
o 1
References and notes
H O). 1.07 g, 87% yield; white solid, m.p.: 83-84 C; H NMR
2
(
400 MHz, CD OD): δ = 7.65 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 8.8
3
13
1. (a) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610; (b) Ruhland, K. Eur.
J. Org. Chem. 2012, 2683; (c) Korotvicka, A.; Necas, D.; Kotora,
M. Curr. Org. Chem. 2012, 16, 1170; (d) Liu, H.; Jiang, X. Synlett
2013, 24, 1311.
Hz, 2H), 4.24 (AB q, J = 11.2 Hz, 2H); C NMR (100 MHz,
CDCl ): δ = 163.0, 135.2, 124.3 (q, J = 287.0 Hz), 119.9, 116.7,
1
δ = -83.07; HRMS (EI) m/z: calcd. for C H F NO : 247.0456,
found: 247.0459.
3
19
05.5, 95.7 (q, J = 30.5 Hz), 67.9; F NMR (376 MHz, CDCl3):
2
.
(a) Joanna, W.; Frank, G. Nature Chem. 2013, 369; (b) Egami, H.;
Shimizu, R.; Kawamura, S.; Sodeoka, M. Angew. Chem. Int. Ed.
10
8
3
3
2
013, 52, 4000; (c) Xi, S.; Yang, L.; Hu, L.; Kang, C.; Zhi, Q.;
31
Zhang, J. Chem. Eur. J. 2012, 18, 16214; (d) Park, Y.; Park, J.;
Jun, C. Acc. Chem. Res. 2008, 41, 222; (e) Grogan, G.; Graf, J.;
Jones, A.; Parsons, S.; Turner, N.; Flitsch, S. Angew. Chem. Int.
Ed. 2001, 40, 1111; (f) Adams, C. J.; Bedford, R. B.; Carter, E.
Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Huwe, M.; Cartes,
M. Á.; Mansell, S. M.; Mendoza, C.; Murphy, D. M.; Neeve, E. C.;
Nunn, J. J. Am. Chem. Soc. 2012, 134, 10333; (g) Rybtchinski, B.;
Milstein, D. Angew. Chem. Int. Ed. 1999, 38, 870; h) Zong, X.;
Zheng, Q.-Z.; Jiao, N. Org. Biomol. Chem. 2014, 12, 1198.
(a) Zhao, Y.-L.; Di, C.-H.; Liu, S.-D.; Meng, J.; Liu, Q.; Adv.
Synth. Catal. 2012, 354, 3545; (b) Zhang, N.; Vozzolo, J. J. Org.
Chem. 2002, 67, 1703; (c) Yan, J.; Travis, B. R.; Borhan, B. J.
Org. Chem. 2004, 69, 9299; (d) Zhao, Q.; Li, H.; Wang, L. Org.
Biomol. Chem. 2013, 11, 6772.
4
.2.3 Methyl 7,7,7-trifluoro-6-oxo-Heptanoate (3j). 1.05 g, 90%
1
yield; colorless oil; H NMR (400 MHz, CDCl ): δ = 3.68 (s,
3
3
H), 2.78 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 7.2 Hz, 2H), 1.68 - 1.71
13
(m, 4H); C NMR (100 MHz, CDCl ): δ = 191.1 (q, J = 34.6
3
Hz), 173.5, 115.5 (q, J = 290.1 Hz), 51.4, 35.9, 33.4, 23.8, 21.7;
19
F NMR (376 MHz, CDCl ): δ = -80.2; MS (EI) m/z 181, 153,
3
1
43, 125, 115, 112, 101, 74.
3
4
.
.
Characterization data of other TFMKs and aromatic acid
esters are provided in the Supporting Information, available
online.
4
.3. Synthesis of 3,3,3-trifluoro-1-phenylprop-1-en-2-yl
(a) Kuninobu, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2006,
methanesulfonate (6)
1
28, 11368; (b) Kuninobu, Y.; Kawata, A.; Nishi, M.; Yudha, S.
S.; Chen, J.; Takai, K. Chem. Asian J. 2009, 4, 1424; (c)
Kuninobu, Y.; Matsuzaki, H.; Nishi, M.; Takai, K. Org. Lett. 2011,
13, 2959; (d) Miura, T.; Shimada, M.; Murakami, M. Angew.
Chem. Int. Ed. 2005, 44, 7598.
Nečas, D.; Turský, M.; Kotora, M. J. Am. Chem. Soc. 2004, 126,
10222.
Under argon atmosphere in a dry Schlenk tube, a mixture of
NaH (6.0 mmol) and trifluoroacetate (6.0 mmol) was stirred in
THF (5 mL) at room temperature for 10 min. To this mixture 1,2-
diphenylacetone (5.0 mmol) in THF (5 mL) was added dropwise
5
.
o
at 0 C under Ar atmosphere. After reflux for 3 h, the reaction
o
6. (a) Grenning, A. J.; Tunge, J. A. J. Am. Chem. Soc. 2011, 133,
4785; (b) Yamamoto, E.; Gokuden, D.; Nagai, A.; Kamachi, T.
mixture was cooled to 0 C again and MeSO Cl (6.0 mmol) was
2
1
added dropwise. After stirring for additional 15 min, the mixture
Yoshizawa, K.; Hamasaki, A.; Ishida, T.; Tokunaga, M. Org. Lett.
2012, 14, 6178.
(a) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370, 540; (b)
Lutz, J.; Rathbun, C.; Stevenson, S.; Powell, B.; Boman, T.;
Baxter, C.; Zona, J.; Johnson, J. J. Am. Chem. Soc. 2012, 134, 715;
was neutralized with saturated NaHCO solution. After usual
3
7
.
workup, the residue was purified by chromatography on silica gel
to afford the trifluoromethyl substituted enol ester 6 as colorless
o
1
needle crystal (1.19 g, 90%). m.p. 90 - 91 C; H NMR (400 MHz,
(c) Pan, B.; Wang, C.; Wang, D.; Wu, F.; Wan, B. Chem.
CDCl ): δ = 7.95 - 7.97 (m, 2H), 7.70 - 7.72 (m, 3H), 7.26 (s,
Commun. 2013, 49, 5073; (d) Murakami, M.; Matsuda, T. Chem.
Commun. 2011, 47, 1100; (e) Rahimi, A.; Azarpira, A.; Kim, H.;
Ralph, J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 6415; (f)
Schmidt, J.; Ehasz, C.; Epperson, M.; Klas, K.; Wyatt, J.; Hennig,
M.; Forconi, M. Org. Biomol. Chem. 2013, 11, 8419.
(a) Sattler, A.; Parkin, G. Nature 2010, 463, 523; (b) Cicchillo, R.
M.; Zhang, H.; Blodgett, J. A. V.; Whitteck, J. T.; Li, G.; Nair, S.
K.; Donk, W. A.; Metcalf, W. W. Nature 2009, 459, 871; (c)
Horino, Y. Angew. Chem. Int. Ed. 2007, 46, 2144; (d) Meng, L.;
Hu, B.; Wu, Q.; Liang, M.; Xue, S. Chem. Commun. 2009, 6089.
(a) Jukič, M.; Šterk, D.; Časar, Z. Curr. Org. Synth. 2012, 9, 488;
(b) Zhang, Y.; Jiao, J.; Flowers II, R. A. J. Org. Chem. 2006, 71,
4516; (c) Grenning, A. J.; Van Allen, C. K.; Maji, T.; Lang, S. B.;
Tunge, J. A. J. Org. Chem. 2013, 78, 7281; (d) Kawata, A.;
Takata, K.; Kuninobu, Y.; Takai, K. Angew. Chem. Int. Ed. 2007,
3
13
1
3
H), 3.41 (s, 3H); C NMR (100 MHz, CDCl ): δ = 132.9 (q, J =
3
0.5 Hz), 130.6, 130.1, 130.0, 129.0, 126.5, 120.2 (q, J = 271.5
19
Hz), 39.99; F NMR (376 MHz, CDCl ): δ = -69.0; HRMS (EI)
3
m/z: calcd. for C H F O S: 266.0224, found: 266.0229.
10
9
3
3
8
9
.
.
4
.4. Computational Details
32
Gaussian 09 program was used to fully optimize all the
33
structures reported in this paper at the B3LYP level theory
together with the basis set 6-31G(d) for all atoms. Each
optimized structure was analyzed by harmonic vibrational
frequencies obtained at the same level and characterized as a
minimum (NImag= 0) or a transition state (NImag= 1). To obtain
more reliable relative energies, a larger basis set and solvation
effect were considered. The single-point energies in THF
solution (used in experiment) were calculated on the basis of gas-
phase optimized geometry by using the SMD implicit solvation
4
6, 7793; (e) Kuninobu,Y.; Kawata, A.; Noborio, T.; Yamamoto,
S.; Matsuki, T.; Takata, K.; Takai, K. Chem. Asian J. 2010, 5, 941;
(f) Grenning, A. J.; Tunge, J. A. Angew. Chem. Int. Ed. 2011, 50,
1688.
1
0. (a) Grubbs, R. H.; Ed. Handbook of Metathesis (Wiley-VCH,
Weinheim, Germany, 2003), vols. 1 to 3; (b) Chauvin, Y. Angew.
Chem. Int. Ed. 2006, 45, 3741; (c) Schrock, R. R. Angew. Chem.
Int. Ed. 2006, 45, 3748; (d) Grubbs, R. H. Angew. Chem. Int. Ed.
2006, 45, 3760; (e) Fürstner, A. Science 2013, 341, 1229713-1.
11. (a) Arisawa, M.; Kuwajima, M.; Toriyama, F.; Li, G.; Yamaguchi,
M. Org. Lett. 2012, 14, 3804; (b) Kumar, P.; Zhang, K.; Louie, J.
Angew. Chem. Int. Ed. 2012, 51, 8602; (c) Youn, S. W.; Kim, B.
S.; Jagdale, A. R. J. Am. Chem. Soc. 2012, 134, 11308; (d) Endo,
K.; Nakano, T.; Fujinami, S.; Ukaji, Y. Eur. J. Org. Chem. 2013,
34
35
model (with UFF atomic radii ) at the B3LYP/6-311+G(d,p)
level. The energies in solution include corresponding energy
corrections obtained from gas-phase calculations. In this paper,
the free energies in solvation are used to analyze the reaction
mechanism.
Acknowledgements
6
514.
The authors gratefully acknowledge the financial support of
the National Natural Science Foundation of China (No.
12. Yang, D.; Zhou, Y.; Xue, N.; Qu, J. J. Org. Chem. 2013, 78, 4171.
1
1
3. Barkley, L. B.; Levine, R. J. Am. Chem. Soc. 1953, 75, 2059.
4. (a) Abdel-Aal, Y. A. I.; Hammock, B. D. Science 1986, 233, 1073;
2
1376040, 21174023, 21137001), the Fundamental Research
(
b) Tripathi, T.; Abdi, M.; Alizadeh, H. Exp. Eye Res. 2013, 113,
82; (c) Tronoa, D.; Socciob, M.; Lausb, M. N.; Pastoreb, D.
Plant Sci., 2013, 199−200, 91; (d) Ilies, M.; Dowling, D. P.;
Funds for the Central Universities (No. DUT13LAB03) and SRF
1