Organic Letters
Letter
Notes
Scheme 4. 2,1-Borazaronaphthalene Scope with both
Primary and Secondary Ammonium
Alkylbis(catecholato)silicates
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the NIGMS (R01 GM-111465
and GM-113878) and Eli Lilly. We thank Kingson Lin
(University of Pennsylvania) for the preparation of alkyl
silicates and Dr. Christopher B. Kelly (University of
Pennsylvania) for helpful discussions. Frontier Scientific is
acknowledged for their generous donation of potassium
organotrifluoroborates. Evonik Industries are acknowledged
for their generous donation of organotrimethoxysilanes.
REFERENCES
■
(1) (a) Francotte, P.; Goffin, E.; Fraikin, P.; Graindorge, E.; Lestage,
P.; Danober, L.; Challal, S.; Rogez, N.; Nosjean, O.; Caignard, D. H.;
Pirotte, B.; de Tullio, P. J. Med. Chem. 2013, 56, 7838. (b) Pirotte, B.;
de Tullio, P.; Florence, X.; Goffin, E.; Somers, F.; Boverie, S.; Lebrun,
P. J. Med. Chem. 2013, 56, 3247. (c) Meanwell, N. A. J. Med. Chem.
2011, 54, 2529. (d) Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96,
3147.
(2) Zhou, H. B.; Nettles, K. W.; Bruning, J. B.; Kim, Y.; Joachimiak,
A.; Sharma, S.; Carlson, K. E.; Stossi, F.; Katzenellenbogen, B. S.;
Greene, G. L.; Katzenellenbogen, J. A. Chem. Biol. 2007, 14, 659.
(3) (a) Liu, L.; Marwitz, A. J.; Matthews, B. W.; Liu, S. Y. Angew.
Chem., Int. Ed. 2009, 48, 6817. (b) Baldock, C.; Rafferty, J. B.;
Sedelnikova, S. E.; Baker, P. J.; Stuitje, A. R.; Slabas, A. R.; Hawkes, T.
R.; Rice, D. W. Science 1996, 274, 2107. (c) Davis, M. C.; Franzblau, S.
G.; Martin, A. R. Bioorg. Med. Chem. Lett. 1998, 8, 843. (d) Grass-
berger, M. A.; Turnowsky, F.; Hildebrandt, J. J. Med. Chem. 1984, 27,
947. (e) Baker, S. J.; Ding, C. Z.; Akama, T.; Zhang, Y.-K.; Hernandez,
V.; Xia, Y. Future Med. Chem. 2009, 1, 1275. (f) Vlasceanu, A.; Jessing,
M.; Kilburn, J. P. Bioorg. Med. Chem. 2015, 23, 4453.
the aryl group off the boron did not seem to affect cross-
coupling. B-4-(Trifluoromethyl)phenyl (1e) and B-benzodiox-
anyl substituents (1f) were both well tolerated, affording
coupling products 6 and 7 in good and excellent yields,
respectively. An o-difluoro-substituted azaborine (1g) did not
impede the reaction and afforded the corresponding alkylated
product 8 almost quantitatively. Whereas selectivity can
sometimes be problematic when dihalogenated systems in
transition-metal-catalyzed cross-couplings are used, total
selectivity for the bromine over the chlorine was observed in
the case of 1h, leaving the latter intact for further modification.
In conclusion, several 2,1-borazaronaphthalene derivatives
were efficiently alkylated using ammonium alkylsilicates via
photoredox/Ni dual catalysis. This selective, high-yielding, and
very mild approach to azaborinyl functionalization enables the
rapid construction of a library of naphthalene isosteres with
numerous types of functional groups at room temperature and
near-neutral conditions. In fact, the modular nature of
constructing the borazaronaphthalene core, combined with
the selective and regiocomplementary means of elaborating this
core, provide a means to access chemical space in a manner that
is challenging, if not impossible, to achieve in the parent
naphthalene systems themselves. The methods outlined in this
report add further to this versatility and may allow enhance-
ment of ADME properties of target structures, thus improving
their viability as potential isosteres for drug molecules.
(4) Wisniewski, S. R.; Guenther, C. L.; Argintaru, O. A.; Molander,
G. A. J. Org. Chem. 2014, 79, 365.
(5) For an overview of the synthetic methods for accessing azaborine
derivatives, see: (a) Bosdet, M. J. D.; Piers, W. E. Can. J. Chem. 2009,
87, 8. (b) Campbell, P. G.; Marwitz, A. J. V.; Liu, S.-Y. Angew. Chem.,
Int. Ed. 2012, 51, 6074. (c) Morgan, M. M.; Piers, W. E. Dalton Trans
(6) Molander, G. A.; Wisniewski, S. R.; Amani, J. Org. Lett. 2014, 16,
5636.
(7) (a) Molander, G. A.; Wisniewski, S. R. J. Org. Chem. 2014, 79,
6663. (b) Molander, G. A.; Amani, J.; Wisniewski, S. R. Org. Lett.
2014, 16, 6024. (c) Amani, J.; Molander, G. A. Org. Lett. 2015, 17,
3624.
(8) Molander, G. A.; Wisniewski, S. R.; Traister, K. T. Org. Lett.
2014, 16, 3692.
(9) (a) Rombouts, F. J. R.; Tovar, F.; Austin, N.; Tresadern, G.;
Trabanco, A. A. J. Med. Chem. 2015, 58, 9287. (b) Foye, W. O.;
Lemke, T. L.; Williams, D. A. Foye’s Principles of Medicinal Chemistry;
Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia,
2013.
(10) (a) Kerns, E. H.; Di, L. Drug-like Properties: Concepts, Structure
Design and Methods, 1st ed.; Elsevier: Burlington, MA, 2008.
(b) Leeson, P. Nature 2012, 481, 455. (c) Manallack, D. T.;
Prankerd, R. J.; Yuriev, E.; Oprea, T. I.; Chalmers, D. K. Chem. Soc.
Rev. 2013, 42, 485.
(11) Seminal reports: (a) Tellis, J. C.; Primer, D. N.; Molander, G. A.
Science 2014, 345, 433. (b) Zuo, Z. W.; Ahneman, D. T.; Chu, L. L.;
Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345,
437. (c) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S.
J. Am. Chem. Soc. 2011, 133, 18566. (d) Ye, Y.; Sanford, M. S. J. Am.
Chem. Soc. 2012, 134, 9034. (e) Sahoo, B.; Hopkinson, M. N.; Glorius,
F. J. Am. Chem. Soc. 2013, 135, 5505.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures, compound characterization
data, and NMR spectra for all compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
(12) Recent advances in photoredox dual catalysis: (a) Primer, D. N.;
Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137,
C
Org. Lett. XXXX, XXX, XXX−XXX