4
Tetrahedron
At this point, we turned our attention to the synthesis of the
Supplementary Material
marine antibiotics rubrolide E, F and 3”-bromorubrolide F (9-11,
Scheme 3). Besides antimicrobial activities,16 compounds 9-11
were recently shown to inhibit NO production, at concentrations
of 10.53, 8.53 and 11.91 µmol/L, respectively.4f The simplest
member of the family, rubrolide E 9 has been synthesized on
numerous occasions in the past.4a-f However, there is only one
synthesis of rubrolides 10-11, reported in early 2017 by Jun and
co-workers.4f Jun’s route begins from p-methoxyacetophenone
and involves Wittig-Horner olefination and tandem SeO2
Supplementary data (detailed experimental procedures,
compounds characterization data, and copies of 1H and 13C NMR
spectra for all new compounds) associated with this article can be
found, in the online version.
References and notes
1. (a) Schneider, P.; Jacobs, J. M.; Neres, J. O.; Aldrich, C. C.; Allen, C.;
Nett, M.; Hoffmeister, D. ChemBioChem 2009, 10, 2730; (b) Pauly, J.;
Nett, M.; Hoffmeister, D. J. Nat. Prod. 2014, 77, 1967; (c) Chang, C.-
W.; Chang, H.-S.; Cheng, M.-J.; Peng, C.-F.; Chen, I.-S. Helv. Chim.
Acta 2015, 98, 347.
2. (a) Schmitt, J.; Sugnet, M.; Salle, J.; Comoy, P.; Callet, G.; LeMeur, J.
Chim. Ther. 1966, 5-6, 305; (b) Evers, B.; Jesudason, C. D.;
Karanjawala, R. E.; Remick, D. M.; Ruehter, G.; Sall, D. J.; Schotten,
T.; Siegel, M. G.; Stenzel, W.; Stucky, R. D. In Beta3 adrenergic
agonists; WO2002006276, 2002; (c) Nam, N.-H.; Kim, Y.; You, Y.-J.;
Hong, D.-H.; Kim, H.-M.; Ann, B.-Z. Arch. Pharm. Res. 2002, 25, 590;
(d) Kumar, N.; Iskander, G. In Furanone compounds and lactam
analogues thereof; WO2008040097, 2008.
oxidation/lactonization as key steps.4f
A deprotection-
reprotection-deprtotection cycle was required to reach 10-11.4f
Our approach is substantially different, utilizing 7k as a common
precursor to all three targeted rubrolides (Scheme 3).
3. Reviews: (a) Knight, D. W. Contemp. Org. Synth. 1994, 1, 287; (b)
Bellina, F.; Rossi, R. Curr. Org. Chem. 2004, 8, 1089; (c) Cunha, S.;
Oliveira, C. C. Quím. Nova 2011, 34, 1425; (d) Zhang, J.; Sarma, K. D.;
Curran, T. T. Synlett 2013, 24, 550; (e) Barbosa, L.; Teixeira, R.;
Amarante, G. Curr. Org. Synth. 2015, 12, 746. (f) Rossi, R.; Lessi, M.;
Manzini, C.; Marianetti, G.; Bellina, F. Curr. Org. Chem. 2017, 21, 964.
4. (a) Boukouvalas, J.; Lachance, N.; Ouellet, M.; Trudeau, M.
Tetrahedron Lett. 1998, 39, 7665 and cited refs; (b) Kar, A.; Argade, N.
P. Synthesis 2005, 2005, 2284; (c) Chavan, S. P.; Pathak, A. B.; Pandey,
A.; Kalkote, U. R. Synth. Commun. 2007, 37, 4253; (d) Cacchi, S.;
Fabrizi, G.; Goggiamani, A.; Sferrazza, A. Synlett 2009, 2009, 1277; (e)
Tale, N. P.; Shelke, A. V.; Tiwari, G. B.; Thorat, P. B.; Karade, N. N.
Helv. Chim. Acta 2012, 95, 852. (f) Damodar, K.; Kim, J.-K.; Jun, J.-G.
Tetrahedron Lett. 2017, 58, 50.
Scheme 3. Synthesis of rubrolides F & E and 3”-bromorubrolide F
5.
(a) Wu, J.; Zhu, Q.; Wang, L. Fathi, R.; Yang, Z. J. Org. Chem. 2003,
68, 670; (b) Scheiper, B.; Bonnekessel, M.; Krause, H.; Fürstner, A. J.
Org. Chem. 2004, 69, 3943; (c) Boukouvalas, J.; Pouliot, M. Synlett
2005, 2005, 343; (d) Le Vézouët, R.; White, A. J. P.; Burrows, J. N.;
Barrett, A. G. M. Tetrahedron 2006, 62, 12252 (e) Boukouvalas, J.;
McCann, L. C. Tetrahedron Lett. 2010, 51, 4636; (f) Hua, Y.; Ding, Q.;
Ye, S.; Peng, Y.; Wu, J. Tetrahedron 2011, 67, 7258; (g) Boukouvalas,
J.; McCann, L. C. Tetrahedron Lett. 2011, 52, 1202; (h) Cheval, N. P.;
Dikova, A.; Blanc, A.; Weibel, J.-M.; Pale, P. Chem. Eur. J. 2013, 19,
8765.
Thus, submission of dibromobutenolide 5b to Suzuki cross-
coupling, followed by dehalogenation and methyl ether cleavage
afforded 7k in 80% yield (3 steps). Next, one-pot vinylogous
aldol condensation4a of 7k with 4-methoxybenzaldehyde (8a)
directly provided rubrolide F (10, 69%). Likewise, using 3-
bromo-4-methoxybenzaldehyde (8b) instead of 8a, 3”-
bromorubrolide F (11) was obtained in 81% yield. Finally,
treatment of rubrolide F with boron tribromide uneventfully led
to rubrolide E (9).
6. (a) Mita, T.; Higuchi, Y.; Sato, Y. Chem. Eur. J. 2015, 21, 16391. (b)
Kumar, Y. K.; Kumar, G. R.; Reddy, M. S. Org. Biomol. Chem. 2016,
14, 1252.
7. (a) Simonis, H. Ber. Dtsch. Chem. Ges. 1899, 32, 2085; (b) Simonis, H.
Ber. Dtsch. Chem. Ges. 1901, 34, 509; (c) Mowry, D. T. J. Am.Chem.
Soc. 1950, 72, 2535.
8. (a) Danon, B.; Marcotullio, G.; de Jong, W. Green Chem. 2014, 16, 39.
(b) Wang, J.; Liu, X.; Hu, B.; Lu, G.; Wang, Y. RSC Adv. 2014, 4,
31101.
9. (a) Blazecka, P. G.; Belmont, D.; Curran, T.; Pflum, D.; Zhang, J. Org.
Lett. 2003, 5, 5015; (b) Kerdesky, F. A. J.; Leanna, M. R.; Zhang, J.; Li,
W.; Lallaman, J. E.; Ji, J.; Morton, H. E. Org. Process Res. Dev. 2006,
10, 512; (c) Biswas, K.; Gholap, R.; Srinivas, P.; Kanyal, S.; Sarma, K.
D. RSC Adv. 2014, 4, 2538.
In conclusion, a new and efficient catalytic method for
accomplishing hydrodehalogenation of α-halo-β-arylbutenolides
was developed. The procedure is operationally simple and
scalable, enabling low-cost access to a variety of α-unsubstituted
β-arylbutenolides from sustainable, furfural-derived α,β-dibromo
and dichlorobutenolides. Using this methodology, the marine
antibiotics rubrolide E, F, and 3”-bromorubrolide F, were
synthesized in 4-5 steps and overall yields of 54-65 % .
10. Gondela, E.; Walczak, K. Z. Eur. J. Med. Chem. 2010, 45, 3993.
11. Rossi, R.; Bellina, F. Synthesis 2007, 2007, 1887.
12. (a) Rossi, R.; Bellina, F.; Raugei, E. Synlett 2000, 2000, 1749; (b)
Bellina, F.; Anselmi, C.; Rossi, R. Tetrahedron Lett. 2001, 42, 3851; (c)
Bellina, F.; Anselmi, C.; Rossi, R. Tetrahedron Lett. 2002, 43, 2023; (d)
Zhang, J.; Blazecka, P. G.; Belmont, D.; Davidson, J. G. Org. Lett. 2002,
4, 4559; (e) Bellina, F.; Anselmi, C.; Martina, F.; Rossi, R. Eur. J. Org.
Chem. 2003, 2003, 2290; (f) Barbosa, L. C. A.; Maltha, C. R. A.; Lage,
M. R.; Barcelos, R. C.; Donà, A.; Carneiro, J. W. M.; Forlani, G. J.
Agric. Food Chem. 2012, 60, 10555; (g) Pereira, U. A.; Barbosa, L. C.
A.; Maltha, C. R. A.; Demuner, A. J.; Masood, M. A.; Pimenta, A. L.
Eur. J. Med. Chem. 2014, 82, 127; (h) Varejao, J. O. S.; Barbosa, L. C.
A.; Maltha, C. R. A.; Lage, M. R.; Lanznaster, M.; Carneiro, J. W. M.;
Forlani, G. Electrochim. Acta 2014, 120, 334; (i) Varejão, J. O. S.;
Barbosa, L. C. A.; Ramos, G. Á.; Varejão, E. V. V.; King-Díaz, B.;
Lotina-Hennsen, B. J. Photochem. Photobiol. B 2015, 145, 11-18; (j)
Lei, M.; Gan, X.; Zhao, K.; Chen, A.; Hu, L. Tetrahedron 2015, 73,
Acknowledgments
We thank the Brazilian agencies Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) for a research
fellowship (LCAB, TMS), a Visiting Researcher Fellowship
(JB), Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES) for a PhD fellowship (MK), and Fundação de
Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for
financial support. We are grateful to Ms. Cristiane Cerceau for
technical assistance with the NMR experiments.