layer structure of the intercalated PQT-12:PCBM39 dramatically
increased after thermal annealing (Fig. 8(b)). However, relatively
7 G. Dennler, M. C. Scharber and C. J. Brabec, Adv. Funct. Mater.,
2009, 21, 1.
8 U. Zhokhavets, T. Erb, H. Hoppe, G. Gobsch and N. S. Sariciftci,
Thin Solid Films, 2006, 496, 679.
9 J. S. Kim, Y. Lee, J. H. Lee, J. H. Park, J. K. Kim and K. Cho, Adv.
Mater., 2010, 22, 1355.
10 B. S. Ong, Y. Wu, P. Liu and S. Gardner, J. Am. Chem. Soc., 2004,
126, 3378.
11 D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han,
D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu and
K. Cho, Adv. Funct. Mater., 2005, 15, 77.
12 H. A. Becerril, N. Miyaki, M. L. Tang, R. Mondal, Y.-S. Sun,
A. C. Mayer, J. E. Parmer, M. D. McGehee and Z. Bao, J. Mater.
Chem., 2009, 19, 591.
weak diffraction peaks at 2q ¼ 6.6ꢂ (d spacing, 13.4 A) were
ꢀ
observed in the PPVQT-C8 films, and thermal treatment induced
only very small increases in the diffraction peak intensities
(Fig. 8(a)). If PPVQT-C8 was mixed with PCBM in the active
layer, the polymer rarely self-assembled in an edge-on orienta-
tion, even though blend films were annealed at 180 ꢂC (Fig. 8(c)).
These results support the assertion that the side chains and p–p
stacking of 3,3-dialkylquaterthiophene units were significantly
hindered by coupled p-divinylene phenylene units.
13 M. T. Lloyd, A. C. Mayer, S. Subramanian, D. A. Mourey,
D. J. Herman, A. V. Bapat, J. E. Anthony and G. G. Malliaras,
J. Am. Chem. Soc., 2007, 129, 9144.
4. Conclusions
14 B. C. Thompson, B. J. Kim, D. F. Kavulak, K. Sivula, C. Mauldin
ꢁ
15 G. Wantz, F. Lefevre, M. T. Dang, D. Laliberte, P. L. Brunner and
O. J. Dautel, Sol. Energy Mater. Sol. Cells, 2008, 92, 558.
16 G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, Adv.
Funct. Mater., 2007, 17, 1636.
17 J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses and
A. J. Heeger, Nat. Mater., 2007, 6, 497.
18 W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Adv. Funct.
Mater., 2005, 15, 1617.
In conclusion, we successfully demonstrated good device
performance of organic solar cells through control of the
crystallinity in p-type conducting polymers. We reduced the
crystallinity of PQTs without significantly changing the light
absorption properties or energy band structure by introducing
a p-divinylene phenylene unit between each pair of 3,3-dia-
lkylquaterthiophene units. By optimizing the nanophase sepa-
ration in the copolymer:PCBM photoactive layers, efficient
photovoltaic performances with PCEs of 2.8% were obtained
without further post-fabrication treatments. The highest device
performances were achieved prior to PCBM aggregation at high
temperatures. The present findings should assist in highly effi-
cient organic solar cell devices with easy fabrication.
and J. M. J. Frechet, Macromolecules, 2007, 40, 7425.
ꢁ
19 M. R. Reyes, K. Kim and D. Carroll, Appl. Phys. Lett., 2005, 87,
083506.
20 J. Hou, C. Yang, J. Qiao and Y. Li, Synth. Met., 2005, 150, 297.
21 A. J. Bard and L. A. Faulkner, Electrochemical Methods-
Fundamentals and Applications, Wiley, New York, 1984.
22 E. Bundgaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2007,
91, 954.
23 B. S. Ong, Y. Wu, P. Liu and S. Gardner, Adv. Mater., 2005, 17, 1141.
€
24 P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim,
C. M. Ramsdale, H. Sirringhaus and R. H. Friend, Phys. Rev. B:
Condens. Matter Mater. Phys., 2003, 67, 064203.
Acknowledgements
J. H. Park and J.-I. Park contributed equally to this work. This
work was supported by the National Research Foundation of
Korea grant (No. 2009-0093485), Manpower Development
Program for Energy and Resource (MKE, 20094020100050-11-
1-000) and Samsung Advanced Institute of Technology (SAIT).
The authors thank the Pohang Accelerator Laboratory for
providing the synchrotron radiation sources at 4C2, 8C1 and
10C1 beam lines used in this study.
€
€
25 M. Sundberg, O. Inganas, S. Stafstrom, G. Gustafsson and
€
B. Sjogren, Solid State Commun., 1989, 71, 435.
26 K. M. Coakley and M. D. McGehee, Chem. Mater., 2004, 16, 4533.
27 M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf,
A. J. Heeger and C. J. Brabec, Adv. Mater., 2006, 18, 789.
28 W. Ma, J. Y. Kim, K. Lee and A. J. Heeger, Macromol. Rapid
Commun., 2007, 28, 1776.
29 G. Dennler, M. C. Scharber and C. J. Brabec, Adv. Mater., 2006, 21,
1.
€
30 C. Melzer, E. J. Koop, V. D. Mihailetchi and P. W. M. Blom, Adv.
Funct. Mater., 2004, 14, 865.
31 V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster and
P. W. M. Blom, Adv. Funct. Mater., 2006, 16, 699.
32 M. A. Lampert and P. Mark, Current Injection in Solids, Academic
Press, New York, 1970.
33 A. M. Goodman and A. Rose, J. Appl. Phys., 1971, 42, 2823.
34 V. D. Mihailetchi, J. Wildeman and P. W. M. Blom, Phys. Rev. Lett.,
2005, 94, 126602.
References and notes
1 S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz
and J. C. Hummelen, Appl. Phys. Lett., 2001, 78, 841.
2 F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater.,
2003, 13, 85.
3 M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees,
€
J. C. Hummelen, J. M. Kroon, O. Inganas and M. R. Andersson,
Adv. Mater., 2003, 15, 988.
4 M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol,
J. C. Hummelen, P. A. van Hal and R. A. J. Janssen, Angew.
Chem., Int. Ed., 2003, 42, 3371.
35 W. Ma, C. Yang and A. J. Heeger, Adv. Mater., 2007, 19, 1387.
36 J. S. Moon, J. K. Lee, S. Cho, J. Byun and A. J. Heeger, Nano Lett.,
2009, 9, 230.
37 J. S. Kim, J. H. Park, J. H. Lee, J. Jo, D.-Y. Kim and K. Cho, Appl.
Phys. Lett., 2007, 91, 112111.
5 F. B. Kooistra, V. D. Mihailetchi, L. M. Popescu, D. Kronholm,
P. W. M. Blom and J. C. Hummelen, Chem. Mater., 2006, 18, 3068.
6 F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu,
W. J. H. Verhees, J. M. Kroon and J. C. Hummelen, Org. Lett.,
2007, 9, 551.
38 J. Jo, S. Kim, S. Na, B. Yu and D.-Y. Kim, Adv. Funct. Mater., 2009,
19, 866.
39 A. C. Mayer, M. F. Toney, S. R. Scully, J. Rivnay, C. J. Brabec,
M. Scharber, M. Koppe, M. Heeney, I. McCulloch and
M. D. McGehee, Adv. Funct. Mater., 2009, 19, 1173.
This journal is ª The Royal Society of Chemistry 2010
J. Mater. Chem., 2010, 20, 5860–5865 | 5865