E
L. Wang et al.
Letter
Synlett
ation products exhibit excellent regioselectivity and stereo-
selectivity. The new manner of providing a halogen source
instead of using halogenating agents is in accordance with
the green chemical idea for inexpensive, flexible operation,
atom economy, and non-pollution. The concept reflected in
this study is that a kind of formic acid reagent has multiple
functions, which greatly simplifies the reaction and separa-
tion of the products.
(12) Mameda, N.; Peraka, S.; Macharla, A. K.; Marri, M. R.; Kodumuri,
S.; Nama, N. Tetrahedron Lett. 2014, 55, 3926.
(13) Chevella, D.; Mameda, N.; Macharla, A. K.; Peraka, S.; Marri, M.
R.; Kodumuri, S.; Nama, N. Synth. Commun. 2016, 13, 1133.
(14) (a) Niizato, H.; Ueno, Y.; Takemura, S. Chem. Pharm. Bull. 1972,
20, 2707. (b) Ueno, Y.; Yamasaki, A.; Terauchi, H.; Takemura, S.
Chem. Pharm. Bull. 1974, 22, 1646.
(15) (a) Ganboa, I.; Palomo, C. Synth. Commun. 1983, 13, 941. (b) Li,
X. K.; Ho, B.; Lim, D. S. W.; Zhang, Y. G. Green Chem. 2017, 19,
914. (c) Zhang, F.; Lu, Q.; Yue, X. X.; Zuo, B. Q.; Qin, M. D.; Li, F.;
Kaplan, D. L.; Zhang, X. G. Acta Biomater. 2015, 12, 139.
(d) Schettini, A. R. A.; Peres, R. C. D.; Soares, B. G. Synth. Met.
2009, 159, 1491. (e) Schueren, L. V. D.; Steyaert, I.;
Schoenmaker, B. D.; Clerck, K. D. Carbohydr. Polym. 2012, 88,
1221.
Acknowledgment
The center of forecasting and analysis in Zhejiang University of Tech-
nology is greatly appreciated. We thank Qingbao Song and Aimin
Chen for suggestions in this paper.
(16) (a) Kozar, L. G.; Clark, R. D.; Heathcock, C. H. J. Org. Chem. 1977,
42, 1386. (b) Kleinfelter, D. C.; Schleyer, P. v. R. Org. Synth. 1962,
42, 79. (c) Kaulen, J. Angew. Chem. Int. Ed. Engl. 1987, 26, 773.
(d) Wang, L.; Floreancig, P. E. Org. Lett. 2004, 6, 4207.
Supporting Information
(17) (a) Wang, L. G.; Zheng, F. X.; Jiang, C. X.; Ni, Z. M. J. Chin. Ceram.
Soc. 2015, 43, 672. (b) Yang, M. S.; Gu, L. H.; Yang, B.; Wang, L.;
Sun, Z. Y.; Zheng, J. Y. Appl. Surf. Sci. 2017, 426, 185. (c) Djebbi,
M. A.; Elabed, A.; Bouaziz, Z.; Sadiki, M.; Elabed, S.; Namour, P.;
Jaffrezic-Renault, N.; Amare, A. B. H. Int. J. Pharm. 2016, 515,
422.
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(18) (a) Veeraiah, T.; Sondu, S. Int. J. Chem. Sci. 2007, 5, 911. (b) Imbri,
D.; Netz, N.; Kucukdisli, M.; Kammer, L. M.; Jung, P.;
Kretzschmann, A.; Opatz, T. J. Org. Chem. 2014, 79, 11750.
(c) Karama, U.; Mahfouz, R.; Al-Othman, Z.; Warad, I.;
Almansour, A. Synth. Commun. 2013, 43, 893. (d) Solladié, N.;
Gross, M. Tetrahedron Lett. 1999, 40, 3359.
(19) (a) Song, S.; Huang, X. Q.; Liang, Y. F.; Tang, C. H.; Li, X. W.; Jiao,
N. Green Chem. 2015, 17, 2727. (b) Dong, J. J.; Fernández-Fueyo,
E.; Li, J. B.; Guo, Z.; Renirie, R.; Wever, R.; Hollmann, F. Green
Chem. 2017, 53, 6207. (c) Lodh, R. S.; Borah, A. J.; Phukan, P.
Indian. J. Chem. 2014, 53B, 1425.
(1) (a) Dewkar, G. K.; Narina, S. V.; Sudalai, A. Org. Lett. 2003, 5,
4501. (b) Damin, B.; Garapon, J.; Sillion, B. Synthesis 1981, 362.
(c) Damin, B.; Garapon, J.; Sillion, B. Tetrahedron Lett. 1980, 21,
1709.
(2) (a) Macharla, A. K.; Nappunni, R. C.; Nama, N. Tetrahedron Lett.
2012, 53, 1401. (b) Phukan, P.; Chakraborty, P.; Kataki, D. J. J. Org.
Chem. 2006, 71, 7533. (c) Taber, D. F.; Liang, J. L. J. Org. Chem.
2007, 72, 431. (d) Yeung, Y. Y.; Gao, X.; Corey, E. J. J. Am. Chem.
Soc. 2006, 128, 9644.
(3) (a) Tripathy, N. k. Georg G. I. 2004, 45, 5309. (b) Buynak, J. D.;
Mathew, J.; Rao, M. N. J. Chem. Soc., Chem. Commun. 1986, 12,
941. (c) Thiem, J.; Gerken, M. J. Carbohydr. Chem. 1982, 1, 229.
(d) Liang, J.; Moher, E. D.; Moore, R. E.; Hoard, D. W. J. Org. Chem.
2000, 65, 3143.
(4) (a) Anderson, J. C.; Headley, C.; Stapleton, P. D.; Taylor, P. W. Tet-
rahedron 2005, 61, 7703. (b) Li, L.; Chan, T. H. Org. Lett. 2001, 3,
739. (c) Larivée, A.; Unger, J. B.; Thomas, M.; Wirtz, C.; Dubost,
C.; Handa, S.; Fürstner, A. Angew. Chem. Int. Ed. 2011, 50, 304.
(5) Kolb, H. C.; Sharpless, K. B. Tetrahedron 1992, 48, 10515.
(6) (a) Hamm, S.; Henning, L.; Findeisen, M.; Müller, D.; Welzel, P.
Tetrahedron 2000, 56, 1345. (b) Suginome, H.; Wang, J. B. Bull.
Chem. Soc. Jpn. 1989, 62, 193.
(7) (a) Glukhovtsev, M. N.; Pross, A.; Radom, L. J. Am. Chem. Soc.
1995, 117, 9012. (b) Xiao, M. Y.; Ren, D. D.; Xu, L. B.; Li, S. S.; Yu,
L. P.; Xiao, J. Org. Lett. 2017, 19, 5724. (c) Ortiz, R.; Herrera, R. P.
Molecules 2017, 22, 574. (d) Zhu, Y.; Mei, H. B.; Han, J. L.;
Soloshonok, V. A.; Zhou, J.; Pan, Y. J. Org. Chem. 2017, 82, 13663.
(e) Miralles, N.; Gomez, J. E.; Kleij, A. W.; Fernandez, E. Org. Lett.
2017, 19, 6096.
(8) De Souza, A. V. A.; Mendonca, G. F.; Bernini, R. B.; De Mattos, M.
C. S. J. Braz. Chem. Soc. 2007, 18, 1575.
(9) Dalton, D. R.; Smith, R. C. J.; Jones, D. G. Tetrahedron 1970, 26,
575.
(20) (a) Adimurthy, S.; Ghosh, S.; Patoliya, P. U.; Ramachandraiah, G.;
Agrawal, M.; Gandhi, M. R.; Upadhyay, S. C.; Ghosh, P. K.; Ranu,
B. C. Green Chem. 2008, 10, 232. (b) Cortes, C. E. S.; Faria, R. B.
Inorg. Chem. 2004, 43, 1395.
(21) (a) Zheng, C. Y.; Slebocka-Tilk, H.; Nagoraski, R. W.; Alvarado, L.;
Brown, R. S. J. Org. Chem. 1993, 58, 2122. (b) Heasley, V. L.;
Shellhamer, D. F.; Iskilian, J. A.; Street, D. L. J. Org. Chem. 1978,
43, 3139. (c) Vardhan, H. B.; Bach, R. D. J. Org. Chem. 1992, 57,
4948. (d) Slebocka-Tilk, H.; Nagorski, S. M. R. W.; Brown, P. T. R.
S.; McDonald, R. J. Am. Chem. Soc. 1995, 117, 8769. (e) Chiappe,
C.; Rubertis, A. D.; Jaber, A.; Lenoir, D.; Wattenbach, C.; Pomelli,
C. S. J. Org. Chem. 2002, 67, 7066. (f) McClendon, E.; Omollo, A.
O.; Valente, E. J.; Hamme, A. T. Tetrahedron Lett. 2009, 50, 533.
(22) Representative Procedure for the Synthesis of Bromofor-
mate 2f
Substrate (1f, 324.4 mg, 2 mmol), KBr (190.4 mg, 1.6 mmol),
formic acid (10 mL) were added to a 50 mL three-necked flask,
and KBr was absolutely dissolved in the mixture with proper
stirring at room temperature. After ZnAl-BrO3–-LDHs (0.8 g) was
added to the mixture, the reaction system was stirred at 40 °C
with use of a reflux condenser in a water bath until the sub-
strate completely disappeared (monitored by TLC). The molecu-
lar bromine was treated with sodium bisulfite solution right
away. The solid phase ZnAl-BrO3–-LDHs was removed by cen-
trifugation. Furthermore, the dichloromethane (3 × 5 mL) used
for washing the ZnAl-BrO3–-LDHs was merged into the liquid
mixture after centrifugation. Then, the products were extracted
(10) Saikia, I.; Krishna, K. R.; Phukan, P. Tetrahedron Lett. 2012, 53,
758.
(11) Podgoršek, A.; Eissen, M.; Fleckenstein, J.; Stavber, S.; Zupan, M.;
Iskra, J. Green Chem. 2009, 11, 120.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–F