ChemComm
Communication
2 Selected recent examples: (a) X. Zeng, G. Cheng, J. Shen and X. Cui,
Org. Lett., 2013, 15, 3022; (b) Q. Xiao, B. Wang, L. Tian, Y. Yang,
J. Ma, Y. Zhang, S. Chen and J. Wang, Angew. Chem., Int. Ed., 2013,
´
52, 9305; (c) L. Florentino, F. Aznar and C. Valdes, Org. Lett., 2012,
˜
14, 2323; (d) J. Barluenga, N. Quinones, M.-P. Cabal, F. Aznar and
´
C. Valdes, Angew. Chem., Int. Ed., 2011, 50, 2350; (e) J. Barluenga,
´
L. Florentino, F. Aznar and C. Valdes, Org. Lett., 2011, 13, 510;
´
´
( f ) J. Barluenga, M. Tomas-Gamasa, F. Aznar and C. Valdes, Adv.
Synth. Catal., 2010, 352, 3235; (g) J. Barluenga, M. Escribano,
´
F. Aznar and C. Valdes, Angew. Chem., Int. Ed., 2010, 49, 6856;
´
´
(h) J. Barluenga, M. Tomas-Gamasa, F. Aznar and C. Valdes, Chem. –
Eur. J., 2010, 16, 12801; (i) J. Barluenga, M. Escribano, P. Moriel,
´
F. Aznar and C. Valdes, Chem. – Eur. J., 2009, 15, 13291; ( j) Q. Xiao,
J. Ma, Y. Yang, Y. Zhang and J. Wang, Org. Lett., 2009, 11, 4732;
´
(k) J. Barluenga, M. Tomas-Gamasa, P. Moriel, F. Aznar and
´
C. Valdes, Chem. – Eur. J., 2008, 14, 4792; (l) J. Barluenga,
´
P. Moriel, C. Valdes and F. Aznar, Angew. Chem., Int. Ed., 2007,
46, 5587; (m) H. Jiang, L. He, X. Li, H. Chen, W. Wu and W. Fu,
Chem. Commun., 2013, 49, 9218.
3 (a) R. Kudirka, S. K. J. Devine, C. S. Adams and D. L. Van Vranken, Angew.
Chem., Int. Ed., 2009, 48, 3677; (b) L. Zhou, F. Ye, Y. Zhang and J. Wang,
J. Am. Chem. Soc., 2010, 132, 13590; (c) A. Khanna, C. Maung,
K. R. Johnson, T. T. Luong and D. L. Van Vranken, Org. Lett., 2012,
14, 3233; (d) P.-X. Zhou, J.-Y. Luo, L.-B. Zhao, Y.-Y. Ye and Y.-M. Liang,
Chem. Commun., 2013, 49, 3254; (e) P.-X. Zhou, Y.-Y. Ye and Y.-M. Liang,
Org. Lett., 2013, 15, 5080; ( f ) Y.-Y. Ye, P.-X. Zhou, J.-Y. Luo, M.-J. Zhong
and Y.-M. Liang, Chem. Commun., 2013, 49, 10190.
Scheme 3 Stereochemical models for the formation of 7.
4 (a) A. M. Johns, J. W. Tye and J. F. Hartwig, J. Am. Chem. Soc., 2006,
´
128, 16010; (b) J. Campora, S. A. Hudson, P. Massiot, C. M. Maya,
E-isomer by comparison of their chemical shifts of three
olefinic protons with those of 7o and Z-7a.
P. Palma and E. Carmona, Organometallics, 1999, 18, 5225;
(c) W. E. Lindsell, D. D. Palmer, P. N. Preston and G. M. Rosair,
Organometallics, 2005, 24, 1119; (d) M. Bao, H. Nakamura and
Y. Yamamoto, J. Am. Chem. Soc., 2001, 123, 759; (e) S. Zhang,
Y. Wang, X. Feng and M. Bao, J. Am. Chem. Soc., 2012, 134, 5492;
( f ) B. Peng, X. Feng, X. Zhang, S. Zhang and M. Bao, J. Org. Chem.,
2010, 75, 2619; (g) B. Peng, S. Zhang, X. Yu, X. Feng and M. Bao, Org.
Lett., 2011, 13, 5402.
5 (a) R.-J. Van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra,
H. J. Heeres and J. G. de Vries, Chem. Rev., 2013, 113, 1499;
(b) P. Gallezot, Chem. Soc. Rev., 2012, 41, 1538; (c) L. Hu, G. Zhao,
W. Hao, X. Tang, Y. Sun, L. Lin and S. Liu, RSC Adv., 2012, 2, 11184;
(d) J. C. Serrano-Ruiz, R. Luque and A. Sepulveda-Escribano, Chem.
Soc. Rev., 2011, 40, 5266; (e) A. A. Rosatella, S. P. Simeonov,
R. F. M. Frade and C. A. M. Afonso, Green Chem., 2011, 13, 754.
6 J. A. Joule and K. Mills, Heterocyclic Chemistry, Wiley, 5th edn, 2010,
p. 689.
7 Reviews of furan dearomatization: (a) B. H. Lipshutz, Chem. Rev.,
1986, 86, 795; (b) S. K. Bur and A. Padwa, Chem. Rev., 2004,
104, 2401; (c) S. P. Roche and J. A. Porco Jr., Angew. Chem., Int.
Ed., 2011, 50, 4068.
8 Recent examples of furan dearomatization: (a) L. I. Palmer and
J. Read de Alaniz, Angew. Chem., Int. Ed., 2011, 50, 7167; (b) K. Veits,
D. R. Wenz and J. Read de Alaniz, Angew. Chem., Int. Ed., 2010,
49, 9484; (c) J.-Q. Dong and H. N. C. Wong, Angew. Chem., Int. Ed.,
2009, 48, 2351; (d) D. Kalaitzakis, T. Montagnon, I. Alexopoulou and
G. Vassilikogiannakis, Angew. Chem., Int. Ed., 2012, 51, 8868;
(e) K. C. Nicolaou, C. R. H. Hale, C. Ebner, C. Nilewski, C. F. Ahles
and D. Rhoades, Angew. Chem., Int. Ed., 2012, 51, 4726.
To rationalize the stereoselectivities obtained, we proposed
stereochemical models A, B and C (Scheme 3). For 7a–7n, model A
was preferred due to the absence of interaction between the
phenyl group and the ligand (model A vs. model B). While for
7o–7q, these reactions exclusively proceeded through model C due
to the chelation between the nitrogen atom and palladium.
In summary, we have developed a simple, practical Pd-catalyzed
coupling of furfural hydrazones with aryl halides, which proceeds via
2-furylmethylenepalladium halide intermediates to provide efficient
access to spiroacetal enol ethers. This is the first report on the
formation of 2-furylmethylenepalladium halides from stable furfural
hydrazones instead of from unstable 2-furylmethyl halides. The
2-furylmethylenepalladium halides can undergo intramolecular
nucleophilic dearomatization, and thus this protocol greatly expands
the synthetic applications of furan derivatives, which can be
obtained sustainably. Further exploration of the reaction scope,
especially the variation of the dearomatizing aryl rings and nucleo-
philes, is currently underway in our laboratory, with the goal of
synthesizing bioactive and natural products via this route.
This work was supported by the National Natural Science
Foundation of China (Nos 21072062, 21272078 and 21336002),
the Fundamental Research Funds for the Central Universities
(2014ZG0027), the Natural Science Foundation of Guangdong
Province, China (10351064101000000), and the Program for
New Century Excellent Talents in Universities (NCET-12-0189).
9 Recent examples of furan dearomatization in our group: (a) B.-L.
Yin, J.-Q. Lai, Z.-R. Zhang and H.-F. Jiang, Adv. Synth. Catal., 2011,
353, 1961; (b) B. Yin, G. Zeng, C. Cai, F. Ji, L. Huang, Z. Li and
H. Jiang, Org. Lett., 2012, 14, 616; (c) B. Yin, C. Cai, G. Zeng, R. Zhang,
X. Li and H. Jiang, Org. Lett., 2012, 14, 1098; (d) B. Yin, L. Huang,
X. Wang, J. Liu and H. Jiang, Adv. Synth. Catal., 2013, 355, 370.
10 Reviews and recent examples of conversion of furans: (a) R. Karinen,
¨
K. Vilonen and M. Niemala, ChemSusChem, 2011, 4, 1002; (b) F. Martel,
B. Estrine, R. Plantier-Royon, N. Hoffmann and C. Portella, Top. Curr.
Chem., 2010, 294, 79; (c) A. Corma, S. Iborra and A. Velty, Chem. Rev.,
2007, 107, 2411; (d) F. M. A. Geilen, T. vom Stein, B. Engendahl,
S. Winterle, M. A. Liauw, J. Klankermayer and W. Leitner, Angew.
Chem., Int. Ed., 2011, 50, 6831; (e) T. Buntara, S. Noel, P. H. Phua,
Notes and references
1 Reviews: (a) Q. Xiao, Y. Zhang and J. Wang, Acc. Chem. Res., 2013,
´
46, 236; (b) J. Barluenga and C. Valdes, Angew. Chem., Int. Ed., 2011,
50, 7486; (c) X. Zhao, Y. Zhang and J. Wang, Chem. Commun., 2012,
48, 10162; (d) Z. Shao and H. Zhang, Chem. Soc. Rev., 2012, 41, 560;
(e) Z. Liu and J. Wang, J. Org. Chem., 2013, 78, 10024; ( f ) Y. Xia,
Y. Zhang and J. Wang, ACS Catal., 2013, 3, 2586.
´
I. Melian-Cabrera, J. G. de Vries and H. J. Heeres, Angew. Chem., Int.
´
Ed., 2011, 50, 7083; ( f ) A. Kabro, E. C. Escudero-Adan, V. V. Grushin
and P. W. N. M. van Leeuwen, Org. Lett., 2012, 14, 4014.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 8113--8116 | 8115