J. Iskra et al. / Tetrahedron Letters 44 (2003) 6309–6312
6311
compound, reaction was less selective, since besides the
mixed tetraoxane, both symmetric ones were formed in
small quantities. Nevertheless 6b was obtained in 45%
yield after crystallization. Aliphatic as well as aromatic
aldehydes could also be used for the cyclization, as may
be seen in Scheme 5.
Supporting information. Experimental procedures and
full characterization for compounds 2, 4, 5, 6 and 7.
Acknowledgements
This research was supported by the European Commu-
nity Human Potential Programme Marie Curie Individ-
ual Fellowship (J.I.) under contract number
HPMF-CT-1999-00097 and GDR Parasitology. We are
grateful to Dr. Dusan Zigon and Dr. Bogdan Kralj for
MS measurements and Miche`le Oure´vitch for the help
with NMR spectra.
Having established that the H2O2/MTO/fluorous alco-
hol oxidative system quantitatively converts aldehydes
into symmetrical tetraoxanes with only 1 equiv. of 30%
H2O2 and 0.1 mol% of MTO, we tried to extrapolate to
the synthesis of mixed tetraoxanes with the basic car-
bonyl unit of an aldehyde and the secondary one of an
aliphatic ketone. Reaction was performed with octanal
and 2 equiv. of H2O2 and 0.1 mol% of MTO in HFIP
(rt, 1 h) followed by the addition of 2 equiv. of 5-
nonanone and 1 equiv. of HBF4 (rt, 1 h). Again, mixed
tetroxane 7 was obtained in 51% isolated yield after
column chromatography and crystallization (Scheme
6).
References
International,
2. (a) Haynes, R. K.; Vonwiller, S. C. Acc. Chem. Res. 1997,
30, 73–79; (b) Robert, A.; Dechy-Cabaret, O.; Cazelles,
J.; Meunier, B. Acc. Chem. Res. 2002, 35, 167–174; (c)
Wu, Y. K. Acc. Chem. Res. 2002, 35, 255–259.
3. McCullough, K. J.; Nojima, M. Curr. Org. Chem. 2001,
5, 601–636.
4. (a) Dong, Y. X.; Matile, H.; Chollet, J.; Kaminsky, R.;
Wood, J. K.; Vennerstrom, J. L. J. Med. Chem. 1999, 42,
1477–1480; (b) Vennerstrom, J. L.; Fu, H. N.; Ellis, W.
Y.; Ager, A. L.; Wood, J. K.; Andersen, S. L.; Gerena,
L.; Milhous, W. K. J. Med. Chem. 1992, 35, 3023–3027;
(c) Vennerstrom, J. L.; Ager, A. L.; Andersen, S. L.;
Grace, J. M.; Wongpanich, V.; Angerhofer, C. K.; Hu, J.
K.; Wesche, D. L. Am. J. Trop. Med. Hyg. 2000, 62,
573–578; (d) Vennerstrom, J. L.; Dong, Y. X.; Andersen,
S. L.; Ager, A. L.; Fu, H. N.; Miller, R. E.; Wesche, D.
L.; Kyle, D. E.; Gerena, L.; Walters, S. M.; Wood, J. K.;
Edwards, G.; Holme, A. D.; McLean, W. G.; Milhous,
W. K. J. Med. Chem. 2000, 43, 2753–2758.
Conclusion. The use of the H2O2/MTO/fluorous alcohol
system enables for the first time a one-pot and selective
synthesis of non-symmetric tetraoxanes in good yields.
Therefore isolation of the intermediate product, the
gem-dihydroperoxide, is no longer necessary, represent-
ing a great improvement because of its unstable and
explosive nature. The use of fluorous alcohols as sol-
vents brings further advantages: the use of an excess of
H2O2 is no longer required, the amount of catalyst is
low (0.1 mol%), and finally, the cyclization step is
highly selective since formation of trimeric cyclic perox-
ides (hexaoxonanes) was completely avoided, tetra-
oxanes being the only reaction products (Scheme 7).
Available tetraoxanes as a group of compounds were so
far structurally limited. However, with this new method
it is now possible to synthesize structurally diverse
tetraoxanes and consequently selectively manipulate
peroxide functionality. This will give a strong impetus
to research on these antimalarials, and on their struc-
ture/activity relationship.
5. Jefford, C. W.; Boukouvalas, A. J. J. Synthesis 1988,
391–393.
6. Kim, H. S.; Shibata, Y.; Wataya, Y.; Tsuchiya, K.;
Masuyama, A.; Nojima, M. J. Med. Chem. 1999, 42,
2604–2609.
7. McCullough, K. J.; Wood, J. K.; Bhattacharjee, A. K.;
Dong, Y. X.; Kyle, D. E.; Milhous, W. K.; Vennerstrom,
J. L. J. Med. Chem. 2000, 43, 1246–1249.
8. (a) Opsenica, D.; Pocsfalvi, G.; Juranic, Z.; Tinant, B.;
Declercq, J. P.; Kyle, D. E.; Milhous, W. K.; Solaja, B.
A. J. Med. Chem. 2000, 43, 3274–3282; (b) Todorovic, N.
M.; Stefanovic, M.; Tinant, B.; Declercq, J. P.; Makler,
M. T.; Solaja, B. A. Steroids 1996, 61, 688–696.
9. Dong, Y. X.; Vennerstrom, J. L. J. Org. Chem. 1998, 63,
8582–8585.
Scheme 6.
10. Ito, Y.; Yokoya, H.; Umehara, Y.; Matsuura, T. Bull.
Chem. Soc. Jpn. 1980, 53, 2407–2408.
11. (a) Kim, H. S.; Tsuchiya, K.; Shibata, Y.; Wataya, Y.;
Ushigoe, Y.; Masuyama, A.; Nojima, M.; McCullough,
K. J. J. Chem. Soc., Perkin Trans. 1 1999, 1867–1870; (b)
Solaja, B. A.; Terzic, N.; Pocsfalvi, G.; Gerena, L.;
Tinant, B.; Opsenica, D.; Milhous, W. K. J. Med. Chem.
2002, 45, 3331–3336.
Scheme 7.