Inorganic Chemistry
Article
M. A.; Karplus, P. A.; Hausinger, R. P. J. Biol. Inorg. Chem. 1999, 4,
468.
(6) (a) Shaw, W. H. R.; Walker, D. G. J. Am. Chem. Soc. 1958, 80,
5337−5342. (b) Williams, A.; Jencks, W. P. J. Chem. Soc., Perkin Trans.
2 1974, 1760.
Azides: Potential Photoafinity Labels. Ph.D. Dissertation, The
Pennsylvania State University, State College, PA, 1994.
(23) Roecker, L.; Akande, J.; Elam, L. N.; Gauga, I.; Helton, B. W.;
Prewitt, M. C.; Sargeson, A. M.; Swango, J. H.; Willis, A. C.; Xin, T.;
Xu, J. Inorg. Chem. 1999, 38, 1269.
(7) Welles, H. L.; Giaquinto, A. R.; Lindstrom, R. E. J. Pharm. Sci.
(24) Gibson, G.; Neverov, A. A.; Brown, R. S. Can. J. Chem. 2003, 81,
1971, 60, 1212.
495.
(8) Callahan, B. P.; Yuan, Y.; Wolfenden, R. J. Am. Chem. Soc. 2005,
127, 10828.
(25) Gibson, G. T. T.; Mohamed, M. F.; Neverov, A. A.; Brown, R. S.
Inorg. Chem. 2006, 45, 7891.
(9) Dixon, N. E.; Riddles, P. W.; Gazzola, C.; Blakeley, R. L.; Zerner,
B. Can. J. Biochem. 1980, 58, 1335. Dixon, N. E.; Riddles, P. W.;
Gazzola, C.; Blakeley, R. L.; Zerner, B. Can. J. Biochem. 1981, 59, 564
(erratum)..
(26) Neverov, A. A.; Cimpean, L.; Vance, T.; Chiykowski, V.; Brown,
R. S. Manuscript in preparation.
(27) (a)
(10) (a) Estiu, G.; Merz, K. M., Jr. J. Am. Chem. Soc. 2004, 126,
11832. (b) Estiu, G.; Merz, K. M., Jr. J. Phys. Chem. B 2007, 111,
10263.
δAbs/δt = Δεkobs((1 + K[7a] + [Cu(OTf)2]K − (1 + 2K[7a]
+ 2[Cu(OTf)2]K + (K)2[7a]2 − 2(K)2[Cu(OTf)2][7a]
+ [Cu(OTf)2]2(K)2)0.5)/(2K))Km/(Km + [Cu(OTf)2]
− (1 + K[7a] + [Cu(OTf)2]K − (1 + 2K[7a] + 2[Cu(OTf)2]K
(11) (a) Meyer, F.; Kaifer, E.; Kircher, P.; Heinze, K.; Pritzkow, H.
Chem.Eur. J. 1999, 5, 1617. (b) Uozumi, S.; Funutachi, H.; Ohba,
M.; Okawa, H.; Fenton, D. E.; Shindo, K.; Murata, S.; Kitko, D. Inorg.
Chem. 1998, 37, 6281. (c) Yamaguchi, K.; Koshino, S.; Akagi, F.;
Suzuki, M.; Uehara, A.; Suzuki, S. J. Am. Chem. Soc. 1997, 119, 5752.
(d) Barrios, A. M.; Lippard, S. J. Inorg. Chem. 2001, 40, 1250.
(e) Barrios, A. M.; Lippard, S. J. J. Am. Chem. Soc. 2000, 122, 9172.
(12) Blakeley, R. L.; Treston, A.; Andrews, R. K.; Zerner, B. J. Am.
Chem. Soc. 1982, 104, 612.
(13) (a) Yao, M.; Tu, W.; Chen, X.; Zhan, C.-G. Org. Biomol. Chem.
2013, 11, 7595. It should be pointed out that the apparent
acceleration of 1025 quoted in this work is based on a computed free
energy of activation for addition of hydroxide to urea of 40.9 kcal
mol−1, while the only available experimental number13b derived from
the Arrhenius activation parameter and entropy is 27 kcal mol −1 at 25
°C. (b) Lynn, K. R. J. Chem. Phys. 1965, 69, 687.
+ (K)2[7a]2 − 2(K)2[Cu(OTf)2][7a] + [Cu(OTf)2]2(K)2)0.5
/(2K))
)
(3)
where δAbs/δt is the initial reaction rate and Δε is the differential
extinction coefficient at 360 nm; Km is the dissociation constant for 7:
(Cu(II))2 ↔ Cu(II) + 7, Cu(II); K is an effective association constant
for formation of 7:Cu(II):(−OR), which incorporates acid dissociation
of 7:Cu(II):(HOR) so is pH dependent; kobs is the observed first-order
rate constant for decomposition of the 7:Cu(II) complex at a given
pH. (b) Equation 3 was obtained from the equations for equilibrium
binding and conservation of mass using the commercially available
MAPLE software: Maple 9.00, June 13, 2003, Built 136194; Waterloo
Maple Inc.: Waterloo, Ontario, Canada.
(14) (a) Brown, R. S.; Neverov, A. A. J. Chem. Soc., Perkin Trans. 2
2002, 1039. (b) Brown, R. S.; Neverov, A. A.; Tsang, J. S. W.; Gibson,
G. T. T.; Montoya-Pelaez, P. J. Can. J. Chem. 2004, 82, 1791.
́
(28) Reddy, K. V.; Jin, S.-J.; Arora, P. K.; Sfeir, D. S.; S. Maloney, C.
F.; Urbach, F. L.; Sayre, L. M. J. Am. Chem. Soc. 1990, 112, 2332.
(29) Sundberg, R. J.; Martin, R. B. Chem. Reo. 1974, 74, 471.
(30) Tsang, J. S. W.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc.
2003, 125, 1559.
(31) At higher concentrations of Cu(II), the Cu(II) precipitated out
as a brown-yellow solid. As a result, the UV−vis spectrum monitoring
the reactions could not be analyzed.
(c) Brown, R. S.; Neverov, A. A. Adv. Phys. Org. Chem. 2008, 42, 271.
(d) Brown, R. S.; Lu, Z.-L.; Liu, C. T.; Tsang, W. Y.; Edwards, D. R.;
Neverov, A. A. J. Phys. Org. Chem. 2009, 23, 1 and references therein.
(e) Brown, R. S. Progress in Inorganic Chemistry; Karlin, K., Ed.; John
Wiley and Sons: New York, 2011; Vol. 57, p 55 and references therein.
(15) (a) Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem.
Res. 1999, 32, 485. (b) Morrow, J. Comm. Inorg. Chem. 2008, 29, 169.
(c) Fothergill, M.; Goodman, M. F.; Petruska, J.; Warshel, A. J. Am.
Chem. Soc. 1995, 117, 11619. (d) Richard, J. P.; Amyes, T. L. Bioorg.
Chem. 2004, 32, 354.
(16) (a) Liu, C. T.; Neverov, A. A.; Maxwell, C. I.; Brown, R. S. J. Am.
Chem. Soc. 2010, 132, 3561. (b) Raycroft, M. A. R.; Liu, C. T.; Brown,
R. S. Inorg. Chem. 2012, 51, 3846.
(17) Barrera, I. F.; Maxwell, C. I.; Neverov, A. A.; Brown, R. S. J. Org.
Chem. 2012, 77, 4156.
(32) No products containing the dipicolylamine moiety were
1
observed by H NMR due to the paramagnetic nature of the Cu(II)
ions that were complexed to them.
(33) Brown, R. S.; Neverov, A. A. Adv. Phys. Org. Chem. 2007, 42,
271−331.
(34) Doc, H.; Kitagawa, T. K. Inorg. Chem. 1982, 21, 2272.
s
s
(35) While we have no direct experimental data for the pKa of the
Cu(II)-coordinated bis(2-picolyl)amine in methanol, Cu(II) coordi-
s
s
nation in a related system reduces the pKaof the OH group of 2-(2′-
hydroxyphenyl)phenanthroline from 16.16 to 0.49 in methanol.16
A
(18) Raycroft, M. A. R.; Maxwell, C. I.; Oldham, R. A. A.; Andrea, A.
S.; Neverov, A. A.; Brown, R. S. Inorg. Chem. 2012, 51, 10325.
(19) Raycroft, M. A. R.; Cimpean, L.; Neverov, A. A.; Brown, R. S.
Inorg. Chem. 2014, 53, 2211.
similar large reduction in amine sspKawould result from Cu(II)
coordination, resulting in the significant stabilization of the departing
anion during Cu(II)-promoted methanolysis of 7. The timing of the
subsequent protonation of the departing Cu(II)-coordinated bis(2-
picolyl)amide cannot be early in the cleavage pathway since the two
picolyl nitrogens and departing N are coordinated to Cu(II), leaving
no available lone pair on the emerging N to which a H bond can
develop until significant or complete C−N cleavage has occurred.
(36) (a) Curtis, N. J.; Dixon, N. E.; Sargeson, A. M. J. Am. Chem. Soc.
1983, 105, 5347. (b) Farlie, D. P.; Jackson, G. W.; McLaughlin, G. M.
Inorg. Chem. 1989, 28, 1983. Farlie, D. P.; Jackson, G. W.; McLaughlin,
G. M. Inorg. Chem. 1990, 29, 3630.
(20) For the designation of pH in nonaqueous solvents we use the
nomenclature recommended by IUPAC: Compendium of Analytical
Nomenclature. Definitive Rules 1997, 3rd ed.; Blackwell: Oxford, U.K.,
1998. The pH meter reading for an aqueous solution determined with
an electrode calibrated with aqueous buffers is designated as wwpH; if
the electrode is calibrated in water and the “pH” of the neat buffered
methanol solution then measured, the term swpH is used; if the
electrode is calibrated in the same solvent in which the “pH” reading is
made, then the term sspH is used. In methanol ws pH-(−2.24) = sspH, and
(37) A kinetically equivalent process could involve decomposition of
8− with trapping of the emerging anilide by H3O+ acting as a general
acid.
since the autoprotolysis constants of methanol and ethanol are 10−16.77
s
and 10−19.1, respectively, the neutral pH is 8.4 and 9.55.
s
(21) Maslak, P.; Sczepanski, J. J.; Parvez, M. J. Am. Chem. Soc. 1991,
(38) Carter, E. L.; Flugga, N.; Boer, J. L.; Mulrooney, S. B.;
213, 1062.
Hausinger, R. P. Metallomics 2009, 1, 207.
(22) Sczepanski J. J. Divalent Metal Ion Promoted Urea Solvolysis:
Model Studies for Jack Bean Urease and Photochemistry of Phosphoryl
(39) Yamaguchi, K.; Koshino, S.; Akagi, F.; Suzuki, M.; Uehara, A.;
Suzuki, S. J. Am. Chem. Soc. 1997, 119, 5752.
7924
dx.doi.org/10.1021/ic500620k | Inorg. Chem. 2014, 53, 7916−7925