3
4. R. Hirschmann, A. B. Smith III, C. M. Taylor, P. A. Benkovic,
S. D. Taylor, K. M. Yager, P. A. Sprengeler, S. J. Benkovic,
Science 994, 265, 234.
5. G.C.S. Reddy, S. Annar, K.U.M. Rao, A. Balakrishna, C.S.
Reddy, Pharm. Chem. 2010, 2, 177.
The recyclability of glycerol was investigated in the case of
the reaction of aniline, benzaldehyde and
dimethyl phosphite. Upon completion of the reaction, the mixture
was extracted with hexane–ethyl acetate. The glycerol phase
(glycerol is insoluble in hydrocarbons) was dried and reused up
to four more times without any significant reduction in the
product yield (from 90% on the first use to 80% on the fourth)
(Table 2).
6. R. F. Pratt, Science 1989, 246, 917.
7. (a) J. Huang and R. Chen, Heteroatom Chem. 2000, 480; (b) G.
Lavielle, P. Hautefaye, C. Schaeffer, J. A. Boutin, C. A.
Cudennec, and A. Pierré, , J. Med. Chem. 1991, 34, 1998.
8. (a) M. J. Kabachnik, T. Medved. Izv. Akad. Nauk SSSR 1953,
1126; (b) M. J. Kabachnik, T. Medved. Izv. Akad. Nauk SSSR
1954, 1024; (c) E. K. Fields, J. Am. Chem. Soc. 1952, 74, 1528.
9. M. Kasthuraiah, K. A. Kumar, C. S. Reddy, C. D. Reddy
Heteroatom Chem. 2007, 18, 2.
Table 2: Reusability of glycerol in the
Kabachnik–Fields reactiona
Run
1
2
3
4
Isolated Yield (%)b
90
87
82
80
10. S. Bhagat A. K. Chakraborti, J. Org. Chem. 2007, 72, 1263.
11. S. Chandrasekhar,S. Jaya Prakash, V. Jagadeshwar, Ch.
Narsihmulu, Tetrahedron Lett. 2001, 42, 5561.
12. A. Heydari, A. Kariman, and J. Ipaktchi, Tetrahedron Lett. 1998,
a
39, 6729.
Reaction conditions: benzaldehyde (1 mmol),
13. D. Pettersen, M. Marcolini, L. Bernardi, F. Fini, R. P. Herrera, V.
Sgarzani, A. Ricci, J. Org. Chem. 2006, 71, 6269.
aniline
(1.1
mmol),
dimethyl
phosphite
(1 mmol), 20 min. b Yield of isolated pure product
14. J. P. Abell, H. Yamamoto, J. Am. Chem. Soc. 2008, 130, 10521.
15. (a) A. Heydari, S. Khaksar, M. Tajbakhsh, H. R. Bijanzadeh, J.
Fluorine Chem. 2009, 130, 609; (b) S. Khaksar, A. Heydari, M.
Tajbakhsh, S. M. Vahdat, J. Fluorine Chem. 2010, 131, 1377.
16. (a) V. D. Santi, F. Cardellini, L. Brinchi, R. Germani, Tetrahedron
Lett. 2012, 53, 5151; (b) B. Singh, H. Lobo, G. Shankarling,
Catal. Lett. 2011, 141,178.
Finally, a comparative study of this system with our recent
report on the one-pot synthesis of α-aminophosphonates in the
presence of dehydroascorbic acid (DHAA) capped magnetite
nanoparticles24 revealed that this system is comparable in terms
of the reaction time and catalyst-free conditions.
17. K.Weissermel, H. J. Arpe, Industrial Organic Chemistry John
Wiley & Sons, 2008.
Glycerol is one of the renewable resources produced as a
waste chemical during the production of fatty acids, biofuels and
biolubricants in quantities greater than the current demand. The
abundant availability of glycerol as a waste at low cost has drawn
much attention aimed toward its use in academia and industry.
18. Y. Gu, J. Barrault, F. Jérôme, Adv. Synth. Catal. 2008, 350, 2007.
19. A. E. Díaz-Álvarez, J. Francos, P. Crochet, V. Cadierno, Curr.
Green Chem. 2014, 1, 51.
20. (a) N. S. Zefirov, E. D. Matveeva, Arkivoc 2008, i, 1; (b) M. V. N.
Reddy, B. S. Kumar, A. Balakrishna,C. S. Reddy, S. K. Nayak, C.
D. Reddy, Arkivoc 2007, xv, 246.
In conclusion, we have shown that glycerol combines the
advantages of water (low toxicity, low cost, ready availability,
renewability) and ionic liquids (high boiling point, low vapor
pressure). The advantages of glycerol for this synthesis of -
aminophosphonates include: (i) the non-assistance of acid
catalysts, which not only simplifies the work-up procedure and
minimizes the generation of waste, but also allows the use of
acid-sensitive substrates; (ii) easy separation of the reaction
products; and (iii) no volatile organic solvent was required for the
reaction to occur.
21. (a) H. M. Bachhav, S. B. Bhagat, V. N. Telvekar, Tetrahedron
Lett. 2011, 52, 5697; (b) V. B. Jagrut, D. L. Lingampalle, P.D.
Netankar, W. N. Jadhav, Pharma Chem. 2013, 5, 8.
22. General procedure for the synthesis of α-aminophosphonates in
glycerol: A mixture of carbonyl compound (1 mmol), amine (1
mmol) and phosphite (1.1 mmol) was stirred at 60-80 °C in
glycerol (4 mmol) for 5-30 min. After completion of the reaction
as indicated by TLC, the mixture was extracted with EtOAc. The
combined organics were dried and evaporated under reduced
pressure. The residue was purified by recrystallization from
CH2Cl2/n-hexane. The identity of the products was confirmed by
comparison of their spectroscopic data with literature data.
23. Dimethyl 1-(phenylamino)cyclohexylphosphonate: yellow solid,
1H NMR (400 MHz, CDCl3): δ = 1.30–1.51 (m, 6H), 1.55–2.12
(4H, m), 3.63 (d, J = 10.4 Hz, 3H), 3.65 (d, J = 10.4 Hz, 3H), 4.50
(br s, 1 H), 7.01 (t, J = 7.1 Hz, 1H), 7.14 (d, J = 8.1 Hz, 2H), 7.17
(t, J = 8.1 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ = 19.8, 26.6,
26.1, 53.2 (d, J = 7.4 Hz), 54.1 (d, J = 7.4 Hz), 66.8 (d, J = 155.1
Hz), 118.4, 118.5, 130.1, 146.7.
Acknowledgments
We are thankful to Tarbiat Modares University for partial support of
this work.
References and notes
24. D. Saberi, S. Cheraghi, S. Mahdudi, J. Akbari, A. Heydari,
Tetrahedron Lett. 2013, 54, 6403.
1. F. R. Atherton, C. H. Hassall and R. W. Lambert, J. Med. Chem.
1986, 29, 29.
2. C. Baldwin, J. M. J Williams, Tetrahedron: Asymmetry 1995, 6,
679.
3. Z. Q. Shang, R. Y. Chen, Y. Huang, Heteroatom Chem. 2007, 18,
230.