M. Jha, G. M. Shelke, A. Kumar
SHORT COMMUNICATION
[1] J. P. MacDonald, J. J. Badillo, G. E. Arevalo, A. Silva-García,
A. K. Franz, ACS Comb. Sci. 2012, 14, 285–293, and references
cited therein.
[2] For selected examples, see: a) B. Robinson, The Alkaloids (Ed.:
R. H. F. Manske), Academic Press, New York, 1967, vol. 10,
p. 383; b) E. Coxworth, The Alkaloids (Ed.: R. H. F. Manske),
Academic Press, New York, 1965, vol. 8, p. 27; c) A. Fensome,
W. R. Adams, A. L. Adams, T. J. Berrodin, J. Cohen, C. Husel-
ton, A. Illenberger, J. C. Kern, V. A. Hudak, M. A. Marella,
E. G. Melenski, C. C. McComas, C. A. Mugford, O. D.
Slayden, M. Yudt, Z. Zhang, P. Zhang, Y. Zhu, R. C. Win-
neker, J. E. Wrobel, J. Med. Chem. 2008, 51, 1861–1873; d) P.
Li, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 6396–6400;
Angew. Chem. 2011, 123, 6520–6524.
Scheme 1. Reaction of hydrazine hydrate with 2-methoxy-6-(prop-
2-ynyloxy)benzaldehyde (3).
group is facilitated by the in situ formation of a diimide
(created by the aerobic oxidation of hydrazine hydrate),
which is consistent with the previously reported mecha-
nism.[16] Currently, we are actively evaluating the full scope
of this mechanism.
[3] K. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto, R. Yamag-
uchi, Org. Lett. 2004, 6, 2785–2788.
[4] H. Tanabe, J. Ichikawa, Chem. Lett. 2010, 39, 248–249.
[5] a) M. P. J. van Deurzen, F. van Rantwijk, R. A. Sheldon, J.
Mol. Catal. B 1996, 2, 33–42; b) T. Krieg, S. Hüttmann, K.
Mangold, J. Schrader, D. Holtmann, Green Chem. 2011, 13,
2686–2689; c) D. I. Perez, M. M. Grau, I. W. C. E. Arends, F.
Hollmann, Chem. Commun. 2009, 6848–6850; d) C. Bai, Y. Ji-
ang, M. Hu, S. Li, Q. Zhai, Catal. Lett. 2009, 129, 457–461.
[6] a) W. Cabri, I. Candiani, M. Colombo, L. Franzoi, A. Bede-
schi, Tetrahedron Lett. 1995, 36, 949–952; b) K. Jones, J. Wilk-
inson, R. Ewin, Tetrahedron Lett. 1994, 35, 7673–7676; c) K.
Jones, C. McCarthy, Tetrahedron Lett. 1989, 30, 2657–2660; d)
W. R. Bowman, H. Heaney, B. M. Jordan, Tetrahedron Lett.
1988, 29, 6657–6660.
[7] a) Y. Donde, L. E. Overman, Catalytic Asymmetric Synthesis
2nd ed. (Ed.: I. Ojima), Wiley, New York, 2000, chapter 8G,
and references cited therein; b) M. Mori, Y. Ban, Tetrahedron
Lett. 1976, 17, 1807–1810; c) M. Mori, Y. Ban, Tetrahedron
Lett. 1979, 20, 1133–1136.
[8] A. Correa, S. Elmore, C. Bolm, Chem. Eur. J. 2008, 14, 3527–
3529.
Conclusions
In conclusion, the reduction of N-(2-alkenyl)/proparg-
ylisatins by using hydrazine hydrate (25% in H2O) led to
N-alkyloxindoles. This is an unprecedented example of a
tandem reduction of two functionalities (i.e., oxo group and
alkene/alkyne) present in isatin under catalyst-free condi-
tions at ambient pressure. The reaction offers clean conver-
sion of the reactants into products in excellent yields, which
can be easily scaled up to gram quantities. As an added
advantage, the N-(2-alkenyl)/propargylisatins can poten-
tially be further chemically manipulated (e.g., chain elong-
ation by using the alkyne functionality) to prepare diversely
substituted oxindoles. The observed counterintuitive double
reduction provides further insight into the full scope of the
Wolff–Kishner procedure to prepare substituted 2-oxind-
oles.
[9] a) S. Lee, J. F. Hartwig, J. Org. Chem. 2001, 66, 3402–3415; b)
K. H. Shaughnessy, B. C. Hamann, J. F. Hartwig, J. Org.
Chem. 1998, 63, 6546–6553.
[10] A. H. Beckett, R. W. Daisley, J. Walker, Tetrahedron 1968, 24,
6093–6109.
[11] D. Ben-Ishai, N. Peled, I. Sataty, Tetrahedron Lett. 1980, 21,
569–572.
[12] E. J. Hennessy, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125,
12084–12085.
Experimental Section
[13] a) D. S. Soriano, J. Chem. Educ. 1993, 70, 332; b) R. J. Sund-
berg, Indoles, Academic Press, London, 1996, p. 17, 152–154.
[14] C. Crestini, R. Saladino, Synth. Commun. 1994, 24, 2835–2841.
[15] M. Jha, T. Chou, B. Blunt, Tetrahedron 2011, 67, 982–989.
[16] a) S. Hünig, H. R. Müller, W. Thier, Angew. Chem. Int. Ed.
Engl. 1965, 4, 271–280; Angew. Chem. 1965, 77, 368–377; b)
D. J. Pasto, R. T. Taylor, Org. React. 1991, 40, 91.
[17] B. Pieber, S. T. Martinez, D. Cantillo, C. O. Kappe, Angew.
Chem. Int. Ed. 2013, 52, 10241–10244; Angew. Chem. 2013,
125, 10431–10434.
[18] R. H. Snell, M. J. Durbin, R. L. Woodward, M. C. Willis,
Chem. Eur. J. 2012, 18, 16754–16764.
[19] D. Rambabu, S. Kiran Kumar, B. Yogi Sreenivas, S. Sandra, A.
Kandale, P. Misra, M. V. Basaveswara Rao, M. Pal, Tetrahe-
dron Lett. 2013, 54, 495–501.
General Procedure for the Synthesis of Substituted Oxindoles by
using Hydrazine Hydrate: N-(2-Alkenyl)/propargylisatin 1 (0.03 g)
was mixed with hydrazine hydrate (25%, 2 mL) and heated at
115 °C (see Table 1 for the reaction time). Upon completion of the
reaction (as evidenced by TLC), the excess amount of hydrazine
hydrate was evaporated under reduced pressure, and the residue
was subjected to flash column chromatography (silica gel; hexanes/
ethyl acetate, 96:04) to give 1-alkyl-2-oxindole 2.
Supporting Information (see footnote on the first page of this arti-
cle): Spectroscopic data and the copies of the 1H NMR and 13C
NMR spectra for products 1a–n, 2a–k, and 4.
[20] For selected examples, see: a) D. Cantillo, M. M. Moghaddam,
C. O. Kappe, J. Org. Chem. 2013, 78, 4530–4542; b) M. Lau-
winer, P. Rys, J. Wissmann, J. Appl. Catal. A 1998, 172, 141–
148.
[21] V. B. Kurteva, S. P. Simeonov, M. Stoilova-Disheva, Pharma-
col. Pharm. 2011, 2, 1–9.
Acknowledgments
The authors gratefully acknowledge the financial support provided
by the Natural Sciences and Engineering Research Council of
Canada (NSERC), Nipissing University, and the Canada Founda-
tion for Innovation (CFI) to conduct this research.
Received: February 7, 2014
Published Online: April 15, 2014
3336
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 3334–3336