Communication
RSC Advances
imine formation reaction of the b-bromovinyl/aryl aldehyde 1
with 5-aminopyrazole 2 generates probably enaminoimine 9a,
which on rearrangement gives azadiene intermediate 9b
(Scheme 2). Then a six-electron cyclization of 9b affords nal
compound 3 with the loss of one molecule of 5-aminopyrazole 2
via intermediate 9c. Our attempt to perform the reaction
between 2a and 4a also afforded compound 3a, which also
supported our proposed mechanism. Although, there are few
references for the direct C-3 and C-4 alkylations of pyrazole
moiety by metal catalyst,19,1i to the best of our knowledge this is
the rst example of C-4 alkylation of pyrazole via cascade imi-
nation/coupling/cycloaddition which leads to the formation
pyrazolo[3,4-b]pyridine. On the other hand, the formation of the
product 6 is envisaged to occur via imine formation between
aldehyde group of 1 with free amine group of pyrazole 5, fol-
lowed by N–H tautomerization (in case of 3-aminopyrazoles, 5a–
c) and Buckwald–Hartwig cross coupling reaction.
C. R. Rodrigues and C. A. M. Fraga, J. Med. Chem., 2003,
46, 1144–1152; (f) F. Manetti, S. Schenone, F. Bondavalli,
C. Brullo, O. Bruno, A. Ranise, L. Mosti, G. Menozzi,
P. Fossa, M. L. Trincavelli, C. Martini, A. Martinelli,
C. Tintori and M. Botta, J. Med. Chem., 2005, 48, 7172–
7185; (g) J. N. Hamblin, T. D. R. Angell, S. P. Ballantine,
C. M. Cook, A. W. J. Cooper, J. Dawson, C. J. Delves,
P. S. Jones, M. Lindvall, F. S. Lucas, C. J. Mitchell,
M. Y. Neu, L. E. Ranshaw, Y. E. Solanke, D. O. Somers and
J. O. Wiseman, Bioorg. Med. Chem. Lett., 2008, 18, 4237–
4241; (h) J. Witherington, V. Bordas, A. Gaiba, N. S. Garton,
A. Naylor, A. D. Rawlings, B. P. Slingsby, D. G. Smith,
A. K. Takle and R. W. Ward, Bioorg. Med. Chem. Lett., 2003,
13, 3055–3057; (i) G. Pandey, S. Bhowmik and S. Batra, Org.
Lett., 2013, 15, 5044–5047.
2 For pyrazolo[3,4-b]quinoline see: (a) K. Karnakar,
S. N. Murthy, K. Ramesh, G. Satish, J. B.Nanubolu and
Y. V. D. Nageswar, Tetrahedron Lett., 2012, 53, 2897–2903;
(b) R. G. Stein, J. H. Beil and T. Singh, J. Med. Chem., 1970,
13, 153–155; (c) S. T. Selvi, V. Nadaraj, S. Mohan, R. Sasi
and M. Hema, Bioorg. Med. Chem., 2006, 14, 3896–3903; (d)
P. Smirnoff and R. R. Crenshaw, Antimicrob. Agents
Chemother., 1977, 11, 571–573; (e) J. R. Mali, U. R. Pratap,
D. V. Jawale and R. A. Mane, Tetrahedron Lett., 2010, 51,
3980–3982; (f) S. Paul, M. Gupta, R. Gupta and A. Loupy,
Tetrahedron Lett., 2001, 42, 3827–3829.
3 For pyrazolo[1,5-a]pyrimidine see: (a) I. Bassoude,
S. Berteina-Raboin, J.-M. Leger, C. Jarry, E. M. Essassi and
G. Guillaumet, Tetrahedron, 2011, 67, 2279–2286; (b)
R. Daniels, K. Kim, E. Lebois, H. Muchalski, M. Hughes
and C. Lindsley, Tetrahedron Lett., 2008, 49, 305–310; (c)
J. Quiroga, J. Portilla, R. Abonia, B. Insuasty, M. Nogueras
and J. Cobo, Tetrahedron Lett., 2008, 49, 6254–6256; (d)
J. Quiroga, J. Portilla, R. Abonia, B. Insuasty, M. Nogueras
and J. Cobo, Tetrahedron Lett., 2007, 48, 6352–6355; (e)
A. S. Kiselyov and L. Smith, Tetrahedron Lett., 2006, 47,
2611–2614; (f) C. Simon, T. Constantieux and J. Rodriguez,
Eur. J. Org. Chem., 2004, 4957–4980; (g) C. A. Almansa,
F. Alberto, F. L. Cavalcanti, L. A. Gomez, A. Miralles,
M. Merlos, J. Garcia-Rafanell and J. Forn, J. Med. Chem.,
2001, 44, 350–361; (h) M. Suzuki, H. Iwasaki, Y. Fujikawa,
M. Sakashita, M. Kitahara and R. Sakoda, Bioorg. Med.
Chem. Lett., 2001, 11, 1285–1288; (i) C. Chen,
K. M. Wilcoxen, C. Q. Huang, Y.-F. Xie, J. R. McCarthy,
T. R. Webb, Y.-F. Zhu, J. Saunders, X.-J. Liu, T.-K. Chen,
H. Bozigian and D. E. Grigoriadis, J. Med. Chem., 2004, 47,
4787–4798.
Conclusions
In conclusion, we have developed an environmentally friendly
general procedure for the efficient and fast synthesis of bio-
logically important pyrazole fused heterocycles pyrazolo[3,4-b]-
pyridines, pyrazolo[3,4-b]quinolines, pyrazolo[1,5-a]pyrimi-
dines and pyrazolo[1,5-a]quinazolines. A wide range of b-hal-
ovinyl/aryl aldehydes undergo this reaction with N-substituted
5-aminopyrazoles and N–H free 3-aminopyrazoles/5-amino-
pyrazoles in presence of palladium catalyst (2.5 mol%) under
microwave irradiation. The general applicability for the
synthesis of all four important heterocycles, simplicity in
operation, solvent-free synthesis, energy efficiency (shorter
reaction time under microwave irradiation), very less catalyst
loading and good yields of products make this procedure
greener and more cost-effective. Preliminary in vitro cytotoxic
studies showed that compounds 3h, 3p, 6a and 6d have cyto-
toxic activities almost comparable to the drug doxorubicin
against cervical HeLa cancer cell line and prostate DU 205
cancer cell line.
Acknowledgements
Kommuri Shekarrao thanks CSIR, New Delhi for the award of
Senior Research Fellowship (CSIR-SRF). We are grateful to
Director, CSIR-NEIST for his keen interests. We gratefully
acknowledge nancial support from CSIR-ORIGIN (CSC0108),
CSIR-ACT (CSC0301) and CSIR-INSPIRE (CSC0107) projects.
4 For pyrazolo[1,5-a]quinazolines see: (a) S. Taliani,
I. Pugliesi, E. Barresi, S. Salerno, C. Marchand,
K. Agama, F. Simorini, C. La Motta, A. M. Marini,
F. S. Di Leva, L. Marinelli, S. Cosconati, E. Novellino,
Y. Pommier, R. Di Santo and F. Da Settimo, J. Med.
Chem., 2013, 56, 7458–7462; (b) A. Nazeer, N. Perveen,
M. Ain Khan, M. Naeem Khan, M. A. Munawar and
W.-O. Lin, Asian J. Chem., 2013, 25, 7705–7709; (c)
B. K. Ghotekar, M. N. Jachak and R. B. Toche,
J. Heterocycl. Chem., 2009, 46, 708–713.
References
1 For pyrazolo[3,4-b]pyridine see: (a) S. Lee and S. B. Park, Org.
Lett., 2009, 11, 5214–5217; (b) G. L. Beutner, J. T. Kuethe,
M. M. Kim and N. Yasuda, J. Org. Chem., 2009, 74, 789–
794; (c) J. Haeufel and B. Eberhard, Angew. Chem., Int. Ed.
Engl., 1974, 13, 604; (d) S.-L. Wang, Y.-P. Liu, B.-H. Xu,
X.-H. Wang, B. Jiang and S.-J. Tu, Tetrahedron, 2011, 67,
9417–9425; (e) E. J. Barreiro, C. A. Camara, H. Verli,
L. Brazil-Mas, N. G. Castro, W. M. Cintra, Y. Aracava,
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 24001–24006 | 24005